• 제목/요약/키워드: low sintering temperature

검색결과 757건 처리시간 0.024초

액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향 (Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC)

  • 정헌채;윤한기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

Low-temperature Sintering Behavior of TiO2 Activated with CuO

  • Paek, Yeong-Kyeun;Shin, Chang-Keun;Oh, Kyung-Sik;Chung, Tai-Joo;Cho, Hyoung Jin
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.682-688
    • /
    • 2016
  • In $TiO_2$-CuO systems, low-temperature sinterability was investigated by a conventional sintering method. Sintering temperatures were set at under $950^{\circ}C$, at which the volume diffusion is inactive. The temperatures are less than the melting point of Ag ($961^{\circ}C$), which is often used as an internal conductor in low-temperature co-fired ceramic technology. To optimize the amount of CuO dopant, various dopant contents were added. The optimum level for enhanced densification was 2 wt% CuO. Excess dopants were segregated to the grain boundaries. The segregated dopants supplied a high diffusion path, by which grain boundary diffusion improved. At lower temperatures in the solid state region, grain boundary diffusion was the principal mass transport mechanism for densification. The enhanced grain boundary diffusion, therefore, improved densification. In this regard, the results of this study prove that the sintering mechanism was the same as that of activated sintering.

저온소결 PCW-PMN-PZT 세라믹스를 적용한 압전변압기의 전기적 특성 (Electrical Characteristics of Piezoelectric Transformer using Low Temperature Sintering PCW-PMN-PZT Ceramics)

  • 정광현;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제19권4호
    • /
    • pp.350-356
    • /
    • 2006
  • In this study, piezoelectric transformer was manufactured at the sintering temperature of $950^{\circ}C$, and then the feasibility of application to low temperature sintering piezoelectric transformers was investigated by evaluating the electrical characteristics of it. The voltage ratio of piezoelectric transformer showed the maximum value at the resonant frequency of input part, and increased according to the increase of load resistance. The output power and efficiency of piezoelectric transformer showed the superior properties when the output impedance of it coincides with the load resistance. Piezoelectric transformer manufactured at the low temperature of $950^{\circ}C$ showed the heat generation less than $20^{\circ}C$ at the output power of 30 W, and stable driving characteristics.

초고압을 이용한 나노급 마그네시아 분말의 저온 소결 연구 (Low Temperature Processing of Nano-Sized Magnesia Ceramics Using Ultra High Pressure)

  • 송정호;엄정혜;노윤영;김영욱;송오성
    • 한국세라믹학회지
    • /
    • 제50권3호
    • /
    • pp.226-230
    • /
    • 2013
  • We performed high pressure high temperature (HPHT) sintering for the 20 nm MgO powders at the temperatures from $600^{\circ}C$ to $1200^{\circ}C$ for only 5 min under 7 GPa pressure condition. To investigate the microstructure evolution and physical property change of the HPHT sintered MgO samples, we employed a scanning electron microscopy (SEM), density and Vickers hardness measurements. The SEM results showed that the grain size of the sintered MgO increased from 200 nm to $1.9{\mu}m$ as the sintering temperature increased. The density results showed that the sintered MgO achieved a more than 95% of the theoretical density in overall sintering temperature range. Based on Vickers hardness test, we confirmed that hardness increased as temperature increased. Our results implied that we might obtain the dense sintered MgO samples with an extremely short time and low temperature HPHT process compared to conventional electrical furnace sintering process.

승온속도에 따른 저온소결 PMN-PNN-PZT 세라믹스의 유전 및 압전특성 (Dielectric and Piezoelectric Characteristic of Low Temperature Sintering PMN-PNN-PZT Ceramics according to the Heating Rate)

  • 김국진;류주현;홍재일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.253-254
    • /
    • 2007
  • In this study, in order to develop low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were fabricated using $Li_2CO_3-Bi_2O_3$-CuO as sintering aids and their piezoelectric and dielectric characteristics were investigated as a function of heating rate. At sintering temperature of $900^{\circ}C$, with increasing heating rate, electromechanical coupling factor(kp), mechanical quality factor(Qm) and dielectric constant $({\varepsilon}_r)$ were increased.

  • PDF

소결조제 첨가에 따른 PMW-PMN-PZT 세라믹의 저온소결 특성 (Low temperature sintering properties of the $Pb(Mg_{1/2}W_{1/2})O_3-Pb(Mn_{1/3}Nb_{2/3})O_3-Pb(Zi,Ti)O_3$ ceramics with the addition of sintering aids)

  • 이현석;류주현;이창배;정영호;백동수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.350-351
    • /
    • 2005
  • In this study, in order to develop the low temperature sintering multilayer piezoelectric transformer, PMW-PMN-PZT system ceramics were manufactured with the addition of sintering aids, and their dielectric and piezoelectric characteristics were investigated. At the composition ceramics sintered at $900^{\circ}C$, dielectric constant(${\varepsilon}r$), electromechanical coupling factor(kp) and mechanical quality factor(Qm) showed the optimal value of 1043, 0.44 and 793, respectively, for multilayer piezoelectric transformer application.

  • PDF

TTIP를 이용한 저온소성용 TiO2 페이스트 최적화 (Optimized for Low-temperature Sintering of TiO2 Paste with TTIP)

  • 정유라;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제26권8호
    • /
    • pp.608-613
    • /
    • 2013
  • In this paper, the low-temperature sintering of $TiO_2$ is approached to solve the problem of high temperature sintering which decreases the interconnection between particles or between substrate and particle. $TiO_2$ paste is prepared with Titanium (IV) isopropoxide as the precursor material and calcinate at different conditions (low temperature). In the results, since the changing of temperature and time of sintering, crystalline phase do not change and the intensities of anatase, rutile phase are higher. At $110^{\circ}C$, 7 h sintering condition, crystalline size of anatase and rutile phase are the smallest which are 13.07 and 17.47 nm, respectively. In addition, the highest zeta potential is about 32.77 mV and the repulsive force increases thus leading to the best of the dispersion characteristics between $TiO_2$ particles. Futhermore, DSSCs at that condition exhibits the highest efficiency with the values of $V_{oc}$, $J_{sc}$, FF and ${\eta}$ are 0.69 V, $8.60mA\;cm^{-2}$, 67.93% and 4.06%, respectively.

압전변압기용 $Pb(Mn_{1/3}Sb_{2/3})O_3-PZT$ 세라믹스에서 승온속도 및 $V_2O_5$ 첨가가 치밀화 및 전기적 특성에 미치는 영향 (Effect of Heating Rate and $V_2O_5$ Addition on Densification and Electrical Properties of $Pb(Mn_{1/3}Sb_{2/3})O_3-PZT$ Ceramics for Piezoelectirc Transformer)

  • 허수정;손준호;손정호;이준형;김정주;정우환;박명식;조상희
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.295-301
    • /
    • 2000
  • The effect of V2O5 addition on the low temperature sintering of Pb(Mn1/3Sb2/3)O3-PZT ceramics, which is known as a prominent material for piezoelectric transformer application was studied, and the densification behavior and piezoelectric characteristics of the samples as a function of heating rate were also examined. V2O5 led the system to liquid phase sintering by forming liquid phase during sintering, which accelerated densification through the particle rearrangement in the early stage of sintering. The liquid phase mostly existed at grain boundaries retarded the evaporation of PbO, while the densification temperature and the weight loss of V2O5-free samples were higher than those of samples with V2O5. Faster heating improved the densification of the samples regardless of V2O5 addition. The low temperature sintering at 100$0^{\circ}C$ was achieved in PMS-PZT ceramics with high density and reasonable dielectric and piezoelectric characteristics. This result revealed optimistic way to the development of multi-layered piezoelectric transformers.

  • PDF

B2O3 가 첨가된 (Zn0.8Mg0.2)TiO3 마이크로파 유전체 세라믹스의 저온소결 (Low Temperature Sintering of B2O3 -added (Zn0.8Mg0.2)TiO3 Microwave Dielectric Ceramics)

  • 방재철
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.29-34
    • /
    • 2006
  • The effects of $B_2O_3$ addition on the low-temperature sintering behavior and microwave dielectric properties of $(Zn_{0.8}Mg_{0.2})TiO_3$ ceramic system were investigated. Highly dense samples were obtained at the sintering temperatures below $900^{\circ}C$. The $Q{\times}f_o$ values were determined by the microstructures and sintering shrinkages which are affected by the amount of $B_2O_3$ and sintering temperature. Temperature coefficient of resonance frequency($T_f$) changes to a positive value with increasing the amount of $B_2O_3$ due to the increased amount of rutile phase which is one of the reaction products between $(Zn_{0.8}Mg_{0.2})TiO_3$ and $B_2O_3$. For $6.19 moi.{\%}B_2O_3$-added $(Zn_{0.8}Mg_{0.2})TiO_3$ system, it exhibits ${\epsilon}_r$ = 23.5, $Q{\times}f_o$ = 53,000 GHz, and $T_f$ = 0 ppm/$^{\circ}C$ when sintered at $900^{\circ}C$ for 5 h.

뮬라이트 세라믹스의 저온 소결을 위한 첨가제 (Low Temperature Sintering Additives for Mullite Ceramics)

  • 임창빈;여동훈;신효순;조용수
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.604-609
    • /
    • 2011
  • Additives for low temperature sintering of mullite ceramics were investigated for matching Mo-Cu conducting paste with that ceramics at 1,400$^{\circ}C$. $SiO_2$, MgO and $Y_2O_3$ were chosen as the additives for low temperature sintering, and the amounts of those additives were varied with sintering temperature of 1,400$^{\circ}C$ to 1,500$^{\circ}C$. With additives of 1.0 wt% of $SiO_2$, 1.0 wt% of MgO, and 1.5 wt% of $Y_2O_3$, the densest sintered body of 3.12 g/$cm^3$ was obtained at 1,400$^{\circ}C$ in reducing atmosphere. The flexural strength of that was 325 MPa and the CTE (Coefficient of thermal expansion) was 4.33 ppm/$^{\circ}C$.