• Title/Summary/Keyword: low shrinkage high performance concrete

Search Result 52, Processing Time 0.027 seconds

A Study on the Chloride Migration Properties of High Durable Marine Concrete Using the Expansion Production Admixture (팽창재를 혼입한 고내구성 해양콘크리트의 염화물 확산특성에 관한 연구)

  • Kim, Kyoung-Min;Ryu, Dong-Woo;Park, Sang-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.697-700
    • /
    • 2008
  • Recently, high strength, flowability, and durability of concrete were required according to increase of large scale and high rise structure. However, cracks occurred easily on the high performance concrete. In this reason, using expansion agent for reducing shrinkage cracks were increased, but it did not consider on durability of high performance concrete. Accordingly, this study1 investigated the resistance of shrinkage and damage form salt by mixing CSA expansion agent on the blast-furnace slag cement and mixed cement for the low heat of hydration by three components. The cases that 8% of expansion agent was mixed and the proportion was OPC were expanded till 43.7 times compared with control concrete. For the resistance to the damage of salt, it was improved when mixing ratio was incresed and the maximum size of coarse aggregate growed bigger. In this study, the resistance to the damage of salt of the cases that 8% of expansion agent was mixed was improved about 16% compared with control concrete.

  • PDF

Drying Shrinkage of Ultra High Strength Steel-Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 자기수축 모델식에 관한 연구)

  • Kang, Su-Tae;Park, Jong-Sup;Joh, Chang-Bin;Park, Jung-Jun;Koh, Gyung-Taek;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.725-728
    • /
    • 2008
  • Most of shrinkage is mainly caused by autogenous shrinkage in Ultra high strength steel-fiber reinforced cementitious composites(UHSFRC). water to binder ratio is very low, about 0.2. It occurs faster hydration and cause a large amount of autogenous shrinkage in early ages. the large autogenous shrinkage can cause harmful cracks in a structure and deteriorate the designed structural performance. therefore it is very important to predict the autogenous shrinkage accurately. The study about the autogenous shrinkage of UHSFRC was carried out in this paper. through comparing with JSCE recommendations for UHSFRC, it was found out that UHSFRC in this study showed higher autogenous shrinkage than that of JSCE. And Applicability of early proposed models by some researchers was also investigated. the analytical results let us know that Miyazawa's model showed the best agreement with the experimentally obtained autogenous shrinkage of UHSFRC.

  • PDF

Influence of Various Replacement Ratio of Electric Arc Furnace Fine Aggregate on Fundamental Properties of Limestone Based High Strength Mortar (전기로 산화 슬래그 잔골재 치환율 변화가 석회암 기반 초고강도 모르타르의 기초적 특성에 미치는 영향)

  • Moon, Byeong-Yong;Song, Yuan-Ru;Lee, Jea-Hyeon;Kim, Min-sang;Han, In-Deok;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.45-46
    • /
    • 2016
  • As the demand for super tall buildings is currently increased in domestic and foreign countries, some kinds of ultra-high strength concretes are being developed actively. Since the cross section of concrete becomes smaller thanks to such kinds of ultra-high strength concretes, the concrete structures can be much bigger, more gigantic and much ultra-high. And as another benefit which is generated thanks to the enhancement of the durability performance, the maintenance expenses are also saved. However, since low W/B ultra-high concrete has a high possibility that many cracks can occur in the initial period due to the self-shrinkage caused by the self-desiccation as one of the blending characteristics, the problem becomes bigger by influencing the safety of a structure. Therefore, in this study, it is intended to analyze the effects of substituting some limestone-based ultra-high strength mortar with electric arc furnace oxidizing slag fine aggregates on the self-shrinkage of mortar.

  • PDF

Ability to Resist Chloride Ion Penetration and Dry Shrinkage Evaluation of Magnesium Phosphate Ceramics (인산마그네슘 세라믹의 염소 이온 투과 저항성 및 길이변화 특성에 관한 성능 평가)

  • Ko, Jeong-Won;Yang, Wan-Hee;Park, Dong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.341-348
    • /
    • 2017
  • The performance degradation of concrete pavement by winter deicer is very serious in Korea, and its maintenance and rehabilitation brings a high expense. Therefore, a suitable method for rehabilitation of such concrete pavement and repair material of proper performance are required. In this study, the properties of compressive strength, ability to resist chloride ion penetration, and properties of dry shrinkage of magnesium phosphate ceramics were assessed to evaluate its applicability as a repair material for concrete pavement in Korea. As a result, the mortar flow showed a normal level of 190 mm, but the viscosity was high and the self-flow ability was poor. The setting time was 12 minutes, leading very rapid-hardening, and thus a prompt work was required. The compressive strength of mortar was 38.4MPa in 2 hours, 73.8MPa in 24 hours, and 111.0MPa in 28 days, showing a significant level. As a result of the test to chloride ion penetration resistance, mortar showed 143 Coulombs, and concrete showed 172.6 Coulombs, which fell under very low level. The drying shrinkage of MPC concrete in 40 days was below $60{\times}10-6$, and comparing with normal cement concrete, it showed the level below 1/10 of other concrete to secure an excellent volume stability. As above, magnesium phosphate ceramics has excellent strength performance, chloride ion penetration resistance, and volume stability, and this in the future shall be used in construction under the consideration of working time or workability, requiring further improvement for such performance.

Mechanical Properties of Cement Paste with Nanomateirals (나노재료를 혼입한 시멘트 페이스트의 역학적 특성)

  • Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.193-194
    • /
    • 2020
  • Recently, as the use of high-performance concrete has become common, various problems related to high-performance concrete have become an issue. Among them, self-shrinkage of cement paste due to low water cement ratio is known to cause problems in the volume stability of concrete. To improve this, studies related to the mixing technology of cement-based materials and nano materials have been actively conducted. Looking at the results of prior research related to nano material mixing technology, generally, research results have been reported in which nano materials are incorporated into cement-based materials to improve material properties1). Among them, it was shown that the mechanical performance and various types of functionality of the cement composite are expressed. Among nano materials, carbon nanotubes (hereinafter referred to as CNTs) and graphenes are used in a mixture with cement-based materials. Accordingly, this study intends to compare the mechanical properties by incorporating various CNTs and graphene into cement paste.

  • PDF

Autogenous Shrinkage of High-Performance Concrete Containing Mineral Admixture (광물질 혼화재를 함유한 고성능 콘크리트의 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Yong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.19-31
    • /
    • 2007
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio and containing fly ash and blast furnace slag. Internal humidity change and shrinkage strain were about 10%, 10%, 7%, 11%, 11% and $320{\times}10^{-6}$, $270{\times}10^{-6}$, $231{\times}10^{-6}$, $371{\times}10^{-6}$, $350{\times}10^{-6}$ respectively on OPC30, O30F10, O30F20, O30G40, O30G50 and from the results, fly ash made humidity change and strain decrease but slag increase comparing with ordinary portland cement. Considering only relation internal humidity and shrinkage by self-desiccation, humidity change and shrinkage represented the strong linear relation regardless of mineral admixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

Effects of Fine LWA and SAP as Internal Water Curing Agents

  • de Sensale, Gemma Rodriguez;Goncalves, Arlindo Freitas
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.229-238
    • /
    • 2014
  • Typical high-performance concrete (HPC) mixtures are characterized by low water-cementitious material ratios, high cement contents, and the incorporation of admixtures. In spite of its superior properties in the hardened state, HPC suffers from many practical difficulties such as its sensitivity to early-age cracking (which is associated with self-desiccation and autogenous shrinkage). In this context, conventional curing procedures are not sufficiently effective to address these limitations. In order to overcome this issue, two strategies,which are based on the use of internal reservoirs of water, have been recently developed.One of these strategies is based on the use of lightweight aggregates (LWA), while the other is based on the use of superabsorbent polymers (SAP). This paper studies and compares the efficiency of the LWA and SAP approaches.Moreover, some of the theoretical aspects that should be taken into account to optimize their application for internal curing of HPC are also discussed. Two fine LWA's and one SAP are studied in terms of autogenous deformation and compressive strength. Increasing the amounts of LWAor SAP can lead to a reduction of the autogenous deformation and compressive strength (especially when adding large amounts). By selecting appropriate materials and controlling their amount, size, and porosity, highly efficient internal water curing can be ensured.

Relation between Autogenous Shrinkage of Concrete and Relative Humidity, Capillary Pressure, Surface Energy in Pore (공극 내 상대습도, 모세관압력, 표면에너지 변화에 따른 콘크리트 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio. Internal humidity change and shrinkage strain were about 10%, 4% and $320\times10^{-6}$, $120\times10^{-6}$ respectively on concrete with water binder ratio 0.3, 0.4 and from the results, humidity change and shrinkage represented the strong linear relation regardless of mixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20 nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

A Experimental Study on the Reinforcing Effects of RC Voided Slab Bridge with Steel Plate/CFS (강판 및 탄소섬유쉬트를 이용한 중공슬래브교의 보강 효과에 관한 실험 연구)

  • 구현본;이정우;정광회;정연주;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.787-792
    • /
    • 2002
  • The voided slab have many advantages, light weight, high load-distribution capacity, low cost and beautiful appearance, etc. But they have also many cracks due to difficulties in designs and construction, analysis, shrinkage, installation and rising force of voided tube. This paper presents the retrofit effects with steel plate(SP)/carbon fiber sheet(CFS) of RC voided slab. As a results of this study, it proved that the strip pattern has to be profitable than full-face pattern in performance such as crack, ultimate loads, stiffness. Retrofit length has many influence on retrofit effects, as the length increases, performance and stability of end blocks higher. Also, it proved that the retrofit on full-section has to be profitable than voided-section in performance, and the overlay length of CFS is desirable to extent approximately and welding(V-cut) has to be efficient than anchors in SP connection. But the kinds of end block and anchor has not influence on retrofit effects.

  • PDF

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.