• Title/Summary/Keyword: low shrinkage

Search Result 493, Processing Time 0.021 seconds

A Study of Shrinkage Characteristics of Low Shrinkage Normal Strength Concrete With Boundary Restraint Condition (4변 구속조건을 갖는 초저수축 일반강도 콘크리트의 수축특성 연구)

  • Jeong, Jun-Young;Min, Kyung-Hwan;Lee, Dong-Gyu;Choi, Hong-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.693-699
    • /
    • 2016
  • In this study, the replacement effects of cementitious materials (fly ash, blast furnace slag, and blended mixtures) were assessed for normal strength concrete with very low shrinkage properties under $350{\mu}{\varepsilon}$ strain using a powder type shrinkage reducing agent. In addition, through mock-up tests of actual size walls restrained with four sides, the shrinkage characteristics using the power type shrinkage reducing agent were measured and the crack reducing ability was assessed. The slump and air contents were measured as the properties of fresh concrete, and the length changes of the prismatic specimens, $100{\times}100{\times}400mm$ in size, were measured for the shrinkage characteristics. To reduce the shrinkage of concrete, the maximum replacing ratio of the fly ash is effective to 20 percent; however, the use of blast furnace slag and ternary mixtures did not reduce the shrinkage.

Performance Evaluation of Prepackaged-Type Low Shrinkage Surface Preparation materials Using Redispersible Polymer Powder (재유화형 분말수지를 이용한 프리페키지드형 저수축 표면조정재의 성능평가)

  • ;Demura, Katsunori
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.368-373
    • /
    • 1998
  • Prepackaged system consists out of a dry mix which contains cement, sand, redispersible polymer powder and admixtures in the right proportions. The purpose of this study is to evaluate the quality of prepackaged-type polymer-modified mortar products using redispersible poly(ethylene-vinyl acetate)(EVA) powder. Polymer-modified mortars using the redispersible polymer powder with powdered with powdered shrinkage-reducing agent were prepared with cellulose fiber contents of 0, 0.5, 1.0% and shrinkage-reducing agent contents of 0, 4%, and tested for drying shrinkage, strength, adhesion in tension, water absorption. From the test results, the prepackaged-type polymer-modified mortar products with 4% of shrinkage-reducing agent content give good properties. and that their properties largely depends on the shrinkage-reducing agent content rather than the cellulose fiber contents.

  • PDF

Effects of Curing Temperature on Autogenous Shrinkage, Relative Humidity, Pore Structure of Cement Pastes

  • Park Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.853-856
    • /
    • 2005
  • A low water/cement ratio leads to autogenous shrinkage of cement paste at an early age. This autogenous shrinkage is related to the change of relative humidity in the pore structure that is formed during the hydration process. The relationship between autogenous shrinkage and relative humidity change are relatively well defined today, but the effects of temperature on autogenous shrinkage, relative humidity, and pore structures have been studied less systematically. This study focused on correlating alterations of these properties of cement paste hydrated at constant temperatures of 20, 40, and $60^{\circ}C$. The test results clearly indicate that increasing curing temperature resulted in increased porosity, particularly for pores between 5 to 50 nm as measured by MIP, and increased autogenous shrinkages, as a consequence of a reduction of relative humidity at early ages.

Evaluation of Shrinkage Properties of Tiles Reinforced with Epoxy Resin Adhesive (에폭시 수지 접착제를 보강한 타일의 수축특성 평가)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Lee, Sang-yun;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.163-164
    • /
    • 2020
  • The purpose of this study was to evaluate the shrinkage properties of a tile reinforced with epoxy resin, which has the advantages of high adhesion and low shrinkage, and causes a hardening reaction by chemical bonding with cement mortar. As a result, since the epoxy resin adhesive suppresses the moisture evaporation of the mortar, the drying shrinkage of the mortar itself is reduced, accordingly, the shrinkage of the tile itself is greatly reduced, and it is thought that it is possible to prevent a decrease in adhesion due to shear stress.

  • PDF

Engineering Properties of Low Cement Mortar with type and Various Incorporating Ratios of Setting Accelerator (응결촉진제 종류 및 치환율 변화에 따른 저시멘트 모르타르의 공학적 특성)

  • Jo, Man-Ki;Han, Sang-Yoon;Cha, Cheon-Soo;Park, Yong-Kyu;Yoon, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.143-144
    • /
    • 2015
  • In this research it was attempted to analyze the general engineering properties of low cement mortar according to the type of setting accelerator and substitution rate, when 1% substitution rate for setting accelerator was used a high rate of compressive strength manifestation was shown and that the WS-10 type setting accelerator was appropriate. For the rate of change of length, when 3% substitution rate for setting accelerator was used, it was shown that due to initial expansion the shrinkage compensation was not significant, and when taking into consideration strength and shrinkage, 1% of WS-10 was shown to be appropriate.

  • PDF

Effect of Low Temperature Plasma and DCCA treatment on the Dimensional Stability and Hand of Wool Fabric (DCCA 처리와 산소 저온플라즈마 처리가 양모직물의 형태안정성과 태에 미치는 영향)

  • Jung, Young-Jin
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.43-52
    • /
    • 2008
  • Wool fabric was treated with oxygen low-temperature plasma (LTP) and dichloroisocyanuric acid. The effect of dimensional stability (relaxation shrinkage, hygral expansion, felting shrinkage), tensile strength and elongation, crease recovery, and hand of wool fabric between LTP, DCCA treated wool fabrics and control wool fabric were investigated. SEM photograph showed that a little micro crack was formed on the fiber surface by plasma treatment with hard condition and epicuticle scale was damaged by DCCA treatment. Felting shrinkage, tensile strength and total hand value were much different in each samples.

Performance Improvement of High Performance Shrinkage Reducing Agent using Early Strength Improving Agent (조기강도 개선제를 활용한 고성능 수축저감제의 성능 개선)

  • Park, Jong-Pil;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.296-302
    • /
    • 2016
  • Studies aimed at reducing the occurrence of cracks by the shrinkage of concrete are in demand because the repair and reinforcement for cracks caused by declining concrete durability costs the user to maintain the concrete structure. In particular, in underground power facilities for power transmission, the cost is a heavy burden to repair and reinforce. For this reason, underground power facilities demanded effective methods for crack reduction at the engineering design step. This study, as a part of the development of shrinkage reducing agent for low shrinkage concrete on underground power facilities, investigated TEA to complement the shrinkage reducing agent to improve the early strength of concrete. In the case of TEA 3% as a shrinkage reducing agent, the early strength was improved significantly, and the shrinkage reducing effect was excellent. In addition, TEA 3.0 % and the shrinkage reducing agent 2.0 % showed excellent shrinkage property and compressive strength. On the other hand, more study of shrinkage reducing materials, including performance reviews on the shrinkage reducing materials with variable factors and type of materials, will be needed to generalize these results.

Shrinkage Properties of High Performance Concrete Used Expansive Additive and Shrinkage Reducing Agent (팽창재와 수축저감제를 사용한 고성능 콘크리트의 수축 특성)

  • Koh, Kyung Taek;Park, Jung Jun;Ryu, Gum Sung;Kang, Su Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.787-794
    • /
    • 2006
  • Generally, high performance concrete has characteristics such as low water-cementitious material ratio, lots of unit binder powder, thus the heat of hydration, autogenous shrinkage are tend to be increased. This study is to investigated the effect of the expansive additive and shrinkage reducing agent on the shrinkage properties of high performance concrete as a study to develop the reduction technology of the concrete shrinkage. Test results showed that the expansive additive and shrinkage reducing agent were effective the reduction of shrinkage of high performance concrete. Especially, the using method in combination with expansive additive and shrinkage reducing agent was more effective than the separately using method of that. Also, it analyzed that the combination of expansive additive of 5% and shrinkage reducing agent of 1% was the most suitable mixture, considering to the fluidity, strength and shrinkage properties.

Suppression of Shrinkage Mismatch in Hetero-Laminates Between Different Functional LTCC Materials

  • Seung Kyu Jeon;Zeehoon Park;Hyo-Soon Shin;Dong-Hun Yeo;Sahn Nahm
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.151-157
    • /
    • 2023
  • Integrating dielectric materials into LTCC is a convenient method to increase the integration density in electronic circuits. To enable co-firing of the high-k and low-k dielectric LTCC materials in a multi-material hetero-laminate, the shrinkage characteristics of both materials should be similar. Moreover, thermal expansion mismatch between materials during co-firing should be minimized. The alternating stacking of an LTCC with silica filler and that with calcium-zirconate filler was observed to examine the use of the same glass in different LTCCs to minimize the difference in shrinkage and thermal expansion coefficient. For the LTCC of silica filler with a low dielectric constant and that of calcium zirconate filler with a high dielectric constant, the amount of shrinkage was examined through a thermomechanical analysis, and the predicted appropriate fraction of each filler was applied to green sheets by tape casting. The green sheets of different fillers were alternatingly laminated to the thickness of 500 ㎛. As a result of examining the junction, it was observed through SEM that a complete bonding was achieved by constrained sintering in the structure of 'calcium zirconate 50 vol%-silica 30 vol%-calcium zirconate 50 vol%'.

A Study on the Hydration Ratio and Autogenous Shrinkage of Low Water/cement Ratio Paste (저물시멘트비 페이스트의 시멘트수화율 및 자기수축에 관한 연구)

  • Hyeon, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.385-390
    • /
    • 2002
  • Autogenous shrinkage of concrete has been defined as decrease in volume due to hydration cement, not due to other causes such as evaporation, temperature change and external load and so on. For ordinary concretes, autogenous shrinkage is so little compared to the other deformations that it has been dignored. It has recently been proved, however, that autogenous shrinkage considerably increase with decrease in water to cement ratio. And it has been reported that cracking can be caused by autogenous shrinkage, when high- strength concretes were used. In this study, we propose an analytical system to represent autogenous shrinkage in cement paste in order to control crack due to autogenous shrinkage. The system is composed with the hydration model and pore structure model. Contrary to the usual assumption of uniform properties in the hydration progress, the hydration model to refine Tomosawa's represents the situation that inner and outer products are made in cement paste. The pore structure model is based upon the physical phenomenon of ion diffusion in cement paste and chemical phenomenon of hydration in cement particle. The proposed model can predict the pore volume ratio and the pore structure in cement paste under variable environmental conditions satisfactorily The autogenous shrinkage prdiction system with regard to pore structure development and hydration at early ages for different mix-proportions shows a reasonable agreement with the experimental data.

  • PDF