• Title/Summary/Keyword: low radiation

Search Result 2,615, Processing Time 0.033 seconds

Construction and Testing of a radiation-beam powered TA (ThermoAcoustic) washer for grease removal

  • Chen, Kuan;DaCosta, David H.;Kim, Yeongmin;Oh, Seung Jin;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • A small washer powered directly and solely by thermal radiation was constructed and tested to explore the feasibility of using solar energy or other types of thermal radiation for washing and cleaning. In principle, TA (ThermoAcoustic) washers have the benefits of simpler design and operation and fewer energy conversion processes, thus should be more energy efficient and cost less than electric washing/cleaning systems. The prototype TA converter we constructed could sustain itself with consistent fluid oscillations for more than 20 minutes when powered by either concentrated solar radiation or an IR (infrared) heater. The frequencies of water oscillations in the wash chamber ranged from 2.6 to 3.6 Hz. The overall conversion efficiency was lower than the typical efficiencies of TA engines. Change in water temperature had little effect on the oscillatory flow in the TA washer due to its low efficiency. On the other hand higher water temperatures enhanced grease removal considerably in our tests. Methods for measuring the overall conversion efficiency, frictional loss, and grease removal of the TA washing system we designed were developed and discussed.

Study on Improvement of Heat Dissipation Characteristics of TIM Material Using Radiant Energy (복사에너지를 이용한 TIM소재의 방열 특성 향상을 위한 연구)

  • Hwang, Myungwon;Kim, Dohyung;Jung, Uoo-Chang;Chung, Wonsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.58-61
    • /
    • 2019
  • The aim of this study is to quantitatively demonstrate the possibility of heat transfer by thermal radiation by comparing heat transfer by conventional heat transfer and radiation by radiation. 1) The heat transfer was measured by using filler of TIM material with low thermal conductivity (CuS). As a result, heat transfer was easier than ceramic with high thermal conductivity ($Al_2O_3$ and $Si_3N_4$). 2) The reason for this is thought to be that the infrared wave due to radiation of the air diaphragm has moved easily. 3) From the above results, the heat dissipation of the TIM material indicates the possibility of heat transfer by thermal radiation.

Microwave Radiation Effects on the Process of Escherichia coli Cultivation

  • Kuznetsov, Denis;Volkhin, Igor;Orlova, Ekaterina;Neschislyaev, Valery;Balandina, Alevtina;Shirokikh, Anna
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.372-380
    • /
    • 2019
  • Modern biotechnological industries have been attempting to improve the efficiency of bacterial strain cultivation. Millimeter wave electromagnetic radiation can have a varied influence on E. coli cultivation processes. The results of the study revealed that when a microwave radiation of low intensity is applied to positively adjust the conditions for the accumulation of bacterial culture biomass, a significant role is played not only by radiation parameters, but also by concomitant biological factors, which influence the reproducibility of the cultivation process and help obtain a useful biotechnological effect. The authors suggest a model that can be used to study the molecular mechanisms underlying the changes in the buildup of E. coli biomass under the influence of electromagnetic radiation.

X-Rays through the Looking Glass: Mobile Imaging Dosimetry and Image Quality of Suspected COVID-19 Patients

  • Schelleman, Alexandra;Boyd, Chris
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.

Radiation tolerance of a small COTS single board computer for mobile robots

  • West, Andrew;Knapp, Jordan;Lennox, Barry;Walters, Steve;Watts, Stephen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2198-2203
    • /
    • 2022
  • As robotics become more sophisticated, there are a growing number of generic systems being used for routine tasks in nuclear environments to reduce risk to radiation workers. The nuclear sector has called for more commercial-off-the-shelf (COTS) devices and components to be used in preference to nuclear specific hardware, enabling robotic operations to become more affordable, reliable, and abundant. To ensure reliable operation in nuclear environments, particularly in high-gamma facilities, it is important to quantify the tolerance of electronic systems to ionizing radiation. To deliver their full potential to end-users, mobile robots require sophisticated autonomous behaviors and sensing, which requires significant computational power. A popular choice of computing system, used in low-cost mobile robots for nuclear environments, is the UP Core single board computer. This work presents estimates of the total ionizing dose that the UP Core running the Robot Operating System (ROS) can withstand, through gamma irradiation testing using a Co-60 source. The units were found to fail on average after 111.1 ± 5.5 Gy, due to faults in the on-board power management circuitry. Its small size and reasonable radiation tolerance make it a suitable candidate for robots in nuclear environments, with scope to use shielding to enhance operational lifetime.

Assessing Commercial CLEANBOLUS Based on Silicone for Clinical Use

  • Son, Jaeman;Jung, Seongmoon;Park, Jong Min;Choi, Chang Heon;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.159-164
    • /
    • 2021
  • Purpose: We investigated the properties of CLEANBOLUS based on silicone with suitable characteristics for clinical use. Methods: We evaluated the characteristics of CLEANBOLUS and compared the results with the commercial product (Super-Flex bolus). Also, we conducted physical evaluations, including shore hardness, element composition, and elongation break. Transparency was investigated through the measured absorbance within the visible region (400-700 nm). Also, dosimetric characteristics were investigated with surface dose and beam quality. Finally, the volume of unwanted air gap was investigated based on computed tomography images for breast, chin, and nose using Super-Flex bolus and CELANBOLUS. Results: CLEANBOLUS showed excellent physical properties for a low shore hardness (000-35) and elongation break (>1,000%). Additionally, it was shown that CLEANBOLUS is more transparent than Super-Flex bolus. Dosimetric results obtained through measurement and calculation have an electron density similar to water in CLEANBOLUS. Finally, CLEANBOLUS showed that the volume of unwanted air gap between the phantom and each bolus is smaller than Super-Flex bolus for breast, chin, and nose. Conclusions: The physical properties of CLEANBOLUS, including excellent adhesive strength and lower shore hardness, reduce unwanted air gaps and ensure accurate dose distribution. Therefore, it would be an alternative to other boluses, thus improving clinical use efficiency.

Feasibility study of a small linear antenna for near range wireless communications (근거리 무선 통신을 위한 소형 선형 안테나의 실현 가능성 연구)

  • 한대현;심재륜;최영식
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.267-270
    • /
    • 2000
  • The feasibility of small linear antenna for near range wireless communications was studied. The requirement of the system are frequency range 9∼12 MHz and antenna size 15 cm. The communication range is about 15 m. The antenna input impedance is very small radiation resistance and very large capacitive reactance. The lossless impedance matching is nearly impossible, therefore lossy matching is considered. The antenna has very low radiation efficiency. The near field calculation has a large uncertainty, but the results can be used as the guideline of a small linear antenna system for a near range wireless communication.

  • PDF

Synchrotron Radiation Induced Photochemical Reactions for Semiconductor Processes

  • Rhee, Shi-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.2
    • /
    • pp.147-157
    • /
    • 1994
  • Valence or core electron excitations induced by Synchrotron radiation (SR) irradiation and ensuing chemical reactions can be applied for semiconductor processes i, e, deposition etching and modifications of thin film materials. Unique selectivity can be achieved by this photochemical reactions in deposition and etching. Some materials can be ecvaporated by SR irradiation which can be utilized for low temperature surface cleaning of thin films. Also SR irradiation significantly lowers the reaction temperature and photon activated surface reactions can be utilized for direct writing or projection lithography of electronic materials. This technique is especially effective in making nanoscale feature size with abrupt and well defined interfaces for next generation electronic devices.

  • PDF

A Study on Chest Radiography Taken Patient Care and Cost Benefit into Consideration (Patient care와 cost benefit를 고려(考慮)한 흉부(胸部) X선촬영(線撮影))

  • Hayashi, Taro
    • Journal of radiological science and technology
    • /
    • v.13 no.2
    • /
    • pp.53-65
    • /
    • 1990
  • Exposure factors in the chest radiographic examination vary with hospital. They include low voltage radiation to high voltage hard radiation quality, which are in wide use. In the present report, exposure factors generally employed are reviewed, and the chest radiograhic techniques performed in our hospital are explained. In addition, the attitude of radiological technologists toward patients and so forth are also discussed.

  • PDF

A Study on 3Dimensional Automatic Boundaries Detection on Medical Images or Radiation Therapy Planning (방사선 치료 계획 장치를 위한 의료 영상의 3차원적 자동 경계선 검출에 관한 연구)

  • Choi, Eun-Jin;Suh, Doug-Young
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.172-175
    • /
    • 1997
  • Outline contour is detected firstly to simulate dose distribution in radiation therapy planning system. In this paper, we developed automatic contour detection system using temporal and spatial relationships of image sequences. The low level image analysis involves the use of directional gradient edge operators and Laplacian operator. The High level portion of algorithm uses a knowledge-based strategy that incorporates fuzzy resoning method.

  • PDF