• Title/Summary/Keyword: low pressure turbine blade

Search Result 77, Processing Time 0.027 seconds

Variation of Dynamic Characteristics of a Low Pressure Turbine Blade with Crack Length (저압터빈 블레이드의 균열 길이에 따른 동특성 변화)

  • Yang, Kyeong-Hyeon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1281-1288
    • /
    • 2009
  • Variation of dynamic characteristics of a low pressure turbine blade with crack length is studied in this paper via both experiments and finite element model. Since most of the turbine blades used in domestic power plants are imported from abroad, it is necessary to understand their dynamic behavior in advance. When experimentally obtained natural frequencies and mode shapes are compared with those from FEM results, they are close to each other in their magnitude. Then, it is more feasible to use finite element model for analyzing the dynamic characteristics of a blade under various operation conditions (rotation speed, temperature, etc) as well as with a crack in the blade.

A Study on Failure Analysis of Low Pressure Turbine Blade Subject to Fatigue Load (피로하중을 받은 저압 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.298-304
    • /
    • 2001
  • Turbine blade is subject to force of three types ; the torsional force by torsional mount, the centrifugal force by the rotation of rotor and the cyclic bending force by steam pressure. The cyclic bending force was a main factor on fatigue strength. SEM fractography in root of turbine blade showed micro-clack width was not dependent on stress intensity factor range. Especially, fatigue did not exist on SEM photograph in root of turbine blade. To clear out the fracture mechanism of turbine blade, nanofractography was needed on 3-dimensional crack initiation and crack growth with high magnification. Fatigue striation partially existed on AFM photograph in root of turbine blade. Therefore, to find a fracture mechanism of the torsion-mounted blade in nuclear power plant, the relation between stress intensity factor range and surface roughness measured by AFM was estimated, and then the load amplitude ΔP applied to turbine blade was predicted exactly by root mean square roughness.

  • PDF

Parametric Cycle Analysis of a Turbofan Engine with Turbine Cooling (터보팬 엔진에서 터빈 냉각이 성능에 미치는 영향에 대한 수치적 해석)

  • Hwang, Jin-Seok;Moon, Hee-Jang;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2006
  • Parametric cycle analysis of a dual-spool, mixed exhaust turbofan engine with turbine blade cooling were described to investigate the effect of turbine blade cooling on the engine performance such as specific thrust and thrust specific fuel consumption. Coolant of low pressure turbine triggers high engine performance loss and cooling effect loss in high pressure turbine. Therefore low pressure turbine coolant should be much more considered for effective design.

  • PDF

Experimental Study on Stream Turbine Cascade Flow (증기터빈 익렬유동에 관한 실험적 연구)

  • 권순범;윤의수;김병지
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2177-2183
    • /
    • 1994
  • The rapid expansion or condensible gas such as moist air of steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the supersonic cascade flow of low pressure steam turbine, the entropy of the flow is increased, and the efficiency of the turbine is decreased. In the present study, to investigate the flow of moist air in 2-dimensional cascade made as the configuration of the tip section of the last actual steam turbine moving blade, the static pressure at both sides of pressure and suction of blade are measured by static pressure taps and the distribution of Mach number on both surfaces of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in a 2-dimensional stationary cascade of a practical steam turbine blade are clearly identified.

Damage Analysis for Last-Stage Blade of Low-Pressure Turbine (저압터빈 최종단 블레이드 손상해석)

  • Song, Gee Wook;Choi, Woo Sung;Kim, Wanjae;Jung, Nam Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1153-1157
    • /
    • 2013
  • A steam turbine blade is one of the core parts in a power plant. It transforms steam energy into mechanical energy. It is installed on the rim of a rotor disk. Many failure cases have been reported at the final stage blades of a low-pressure (LP) turbine that is cyclically loaded by centrifugal force because of the repeated startups of the turbine. Therefore, to ensure the safety of an LP steam turbine blade, it is necessary to investigate the fatigue strength and life. In this study, the low cycle fatigue life of an LP steam turbine blade is evaluated based on actual damage analysis. To determine the crack initiation life of the final stage of a steam turbine, Neuber's rule is applied to elastic stresses by the finite element method to calculate the true strain amplitude. It is observed that the expected life and actual number of starts/stops of the blade were well matched.

Modification and Testing to Prevent the Resonance in a Finger-type Low Pressure Turbine Blade (저압 터빈용 Finger 형 블레이드의 공진 방지를 위한 개선 및 시험)

  • Ha, Hyun-Cheon;Lee, Dong-Jin;Ryu, Seok-Ju;Chung, Hee-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.612-617
    • /
    • 2000
  • This paper describes the experience gained from the treatments for prevention of blade failure occurred in the low-pressure turbine. Some cracks due to high cycle fatigue were found at the blades in low-pressure turbines after long time operation. Such failure was mainly caused by the resonance of the blade with the vane passing frequency excitation. If a natural frequency of the blade exists near the excitation frequency, a resonant vibration can occur and leads to a large amount of stress which may cause fatigue failures in turbine blades. To avoid the resonance of the blade, some modifications have been performed and full-scaled mockup testing has been done to confirm the verification for modification. Test result shows that enlarging the span cover is very useful to change the natural frequency of the grouped blades effectively.

  • PDF

Root Cause Analysis on the Steam Turbine Blade Damage of the Combined Cycle Power Plant (복합화력발전소 증기터빈 동익 손상 원인분석)

  • Kang, M.S.;Kim, K.Y.;Yun, W.N.;Lee, W.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The last stage blade of the low pressure steam turbine remarkably affects turbine plant performance and availability Turbine manufacturers are continuously developing the low pressure last stage blades using the latest technology in order to achieve higher reliability and improved efficiency. They tend to lengthen the last stage blade and apply shrouds at the blades to enhance turbine efficiency. The long blades increase the blade tip circumferential speed and water droplet erosion at shroud is anticipated. Parts of integral shrouds of the last stage 40 inch blades were cracked and liberated recently in a combined cycle power plant. In order to analyze the root cause of the last stage blades shroud cracks, we investigated operational history, heat balance diagram, damaged blades shape, fractured surface of damaged blades, microstructure examination and design data, etc. Root causes were analyzed as the improper material and design of the blade. Notches induced by erosion and blade shroud were failed eventually by high cycle fatigue. This paper describes the root cause analysis and countermeasures for the steam turbine last stage blade shroud cracks of the combined cycle power plant.

  • PDF

An Experimental Study of Incidence Angel Effect on 3-D Axial Type Turbine (3차원 축류형 터빈에서 입사각의 영향에 관한 실험적 연구)

  • Kim, Dong-Sik;Cho, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1292-1301
    • /
    • 2002
  • An experimental study of turbine performance is conducted with various incidence angles on a rotating turbine rotor. 5 different incidence angles are applied from -17$^{\circ}$to 13$^{\circ}$with 7.5$^{\circ}$gaps. In order to precisely set up the incidence angles at the rotor inlet, 5 turbine discs are manufactured with the different fir tree section. Total-to-total efficiencies are obtained on the several off-design points with considering the exit total pressure, which is meas fred at 12 locations between the hub and casing using a pressure rake. The degree of reaction is 0.373 at the mean radius, and Reynolds number based on the rotor chord is 0.86$\times$10$^{5}$ at the turbine inlet on the design point experiment. The experiment on a single-stage turbine is conducted at the low-pressure and low-speed state, but it is sufficient to consider the blade loading effect due to the rotating apparatus even though the total pressure loss at the exit is increased proportionally to the turbine output power. The experimental results recommend 6$^{\circ}$as an optimum incidence angle on the turbine blade design. The total-to-total efficiency is steeply decreased when the incidence angle is over $\pm$9$^{\circ}$ from the optimum incidence angle. In the range of less than -10$^{\circ}$incidence angle, 7.5$^{\circ}$ reduction of incidence angle generates 15% decrease of total-to-total efficiency. This result is obtained on the same rotor blade by changing only the rotational speed to minimize the effect of profile and secondary flow loss in the passage. Experimental results show that the change rate of total-to-total efficiency according to the incidence angle change is unchanged although the turbine operates at the off-design condition.

Design of a Pump-Turbine Based on the 3D Inverse Design Method

  • Chen, Chengcheng;Zhu, Baoshan;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2015
  • The pump-turbine impeller is the key component of pumped storage power plant. Current design methods of pump-turbine impeller are private and protected from public viewing. Generally, the design proceeds in two steps: the initial hydraulic design and optimization design to achieve a balanced performance between pump mode and turbine mode. In this study, the 3D inverse design method is used for the initial hydraulic impeller design. However, due to the special demand of high performance in both pump and reverse mode, the design method is insufficient. This study is carried out by modifying the geometrical parameters of the blade which have great influence and need special consideration in obtaining the high performance on the both modes, such as blade shape type at low pressure side (inlet of pump mode, outlet of turbine mode) and the blade lean at blade high pressure side (outlet of pump mode, inlet of turbine mode). The influence of the geometrical parameters on the performance characteristic is evaluated by CFD analysis which presents the efficiency and internal flow results. After these investigations of the geometrical parameters, the criteria of designing pump-turbine impeller blade low and high sides shape is achieved.

Flow Analysis on a 1kW-class Horizontal Axis Wind Turbine Blade for Hybrid Power Generation System (복합발전 적용을 위한 1kW급 수평축 풍력터빈 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Choi, Young-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • This study is to develop a 1kW-class small wind turbine blade which will be applicable to relatively low speed regions. For this blade, a high efficiency wind turbine blade is designed and a light and low cost composite structure blade is adopted considering fatigue life. In this study, shape design of 1kW-class small wind turbine blade for hybrid power generation system is carried out by BEMT(blade element momentum theory). X-FOIL open software was used to acquire lift and drag coefficients of the 2D airfoils used in power prediction procedure. Moreover, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  • PDF