• 제목/요약/키워드: low power image processing

검색결과 101건 처리시간 0.029초

CMOS Binary Image Sensor Using Double-Tail Comparator with High-Speed and Low-Power Consumption

  • Kwen, Hyeunwoo;Jang, Junyoung;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.82-87
    • /
    • 2021
  • In this paper, we propose a high-speed, low-power complementary metal-oxide semiconductor (CMOS) binary image sensor featuring a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector based on a double-tail comparator. The GBT photodetector forms a structure in which the floating gate (n+ polysilicon) and body of the PMOSFET are tied, and amplifies the photocurrent generated by incident light. The double-tail comparator compares the output signal of a pixel against a reference voltage and returns a binary signal, and it exhibits improved power consumption and processing speed compared with those of a conventional two-stage comparator. The proposed sensor has the advantages of a high signal processing speed and low power consumption. The proposed CMOS binary image sensor was designed and fabricated using a standard 0.18 ㎛ CMOS process.

Minimum Statistics-Based Noise Power Estimation for Parametric Image Restoration

  • Yoo, Yoonjong;Shin, Jeongho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권2호
    • /
    • pp.41-51
    • /
    • 2014
  • This paper describes a method to estimate the noise power using the minimum statistics approach, which was originally proposed for audio processing. The proposed minimum statistics-based method separates a noisy image into multiple frequency bands using the three-level discrete wavelet transform. By assuming that the output of the high-pass filter contains both signal detail and noise, the proposed algorithm extracts the region of pure noise from the high frequency band using an appropriate threshold. The region of pure noise, which is free from the signal detail part and the DC component, is well suited for minimum statistics condition, where the noise power can be extracted easily. The proposed algorithm reduces the computational load significantly through the use of a simple processing architecture without iteration with an estimation accuracy greater than 90% for strong noise at 0 to 40dB SNR of the input image. Furthermore, the well restored image can be obtained using the estimated noise power information in parametric image restoration algorithms, such as the classical parametric Wiener or ForWaRD image restoration filters. The experimental results show that the proposed algorithm can estimate the noise power accurately, and is particularly suitable for fast, low-cost image restoration or enhancement applications.

Simulation of High-Speed and Low-Power CMOS Binary Image Sensor Based on Gate/Body-Tied PMOSFET-Type Photodetector Using Double-Tail Comparator

  • Kwen, Hyeunwoo;Kim, Sang-Hwan;Lee, Jimin;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.82-88
    • /
    • 2020
  • In this paper, we propose a complementary metal-oxide semiconductor (CMOS) binary image sensor with a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector using a double-tail comparator for high-speed and low-power operations. The GBT photodetector is based on a PMOSFET tied with a floating gate (n+ polysilicon) and a body that amplifies the photocurrent generated by incident light. A double-tail comparator compares an input signal with a reference voltage and returns the output signal as either 0 or 1. The signal processing speed and power consumption of a double-tail comparator are superior over those of conventional comparator. Further, the use of a double-sampling circuit reduces the standard deviation of the output voltages. Therefore, the proposed CMOS binary image sensor using a double-tail comparator might have advantages, such as low power consumption and high signal processing speed. The proposed CMOS binary image sensor is designed and simulated using the standard 0.18 ㎛ CMOS process.

합성곱 신경망 병렬 연산처리를 지원하는 저전력 곱셈 프로세싱 엘리먼트 설계 (Low-Power Multiplication Processing Element Hardware to Support Parallel Convolutional Neural Network Processing)

  • 박은평;박종수
    • Journal of Platform Technology
    • /
    • 제12권2호
    • /
    • pp.58-63
    • /
    • 2024
  • CNN은 이미지 인식분야에서 높은 성능을 보이지만 반복적인 학습이 진행될 경우 많은 데이터 연산처리로 인한 시스템 자원부족으로 학습 시간이 오래 걸리고 많은 전력을 소모한다는 단점이 있다. 이에 본 논문에서는 합성곱 신경망 연산처리의 핵심 요소인 곱셈 프로세싱 엘리먼트에서 곱셈연산을 수행할 때 발생되는 스위칭 엑티비티를 줄이기 위해 승수와 피승수의 교환율을 늘리는 저전력 부스 곱셈기를 기반으로 하는 프로세싱 엘리먼트를 제안한다. 합성곱 신경망 병렬 연산처리를 지원하는 저전력 곱셈 프로세싱 엘리먼트는 Verilog-HDL을 사용하여 설계되었고, Intel DE1-SoC FPGA Board에 구현하였다. 실험은 성능평가에 대표적으로 MNIST의 숫자 이미지 데이터베이스를 대상으로 기존 제안된 곱셈기의 교환율과 비교하여 성능을 검증하였다.

  • PDF

CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector for Low-Power and Low-Noise Operation

  • Lee, Junwoo;Choi, Byoung-Soo;Seong, Donghyun;Lee, Jewon;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo;Choi, Pyung
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.362-367
    • /
    • 2018
  • A complementary metal oxide semiconductor (CMOS) binary image sensor is proposed for low-power and low-noise operation. The proposed binary image sensor has the advantages of reduced power consumption and fixed pattern noise (FPN). A gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector is used as the proposed CMOS binary image sensor. The GBT PMOSFET-type photodetector has a floating gate that amplifies the photocurrent generated by incident light. Therefore, the sensitivity of the GBT PMOSFET-type photodetector is higher than that of other photodetectors. The proposed CMOS binary image sensor consists of a pixel array with $394(H){\times}250(V)$ pixels, scanners, bias circuits, and column parallel readout circuits for binary image processing. The proposed CMOS binary image sensor was analyzed by simulation. Using the dynamic comparator, a power consumption reduction of approximately 99.7% was achieved, and this performance was verified by the simulation by comparing the results with those of a two-stage comparator. Also, it was confirmed using simulation that the FPN of the proposed CMOS binary image sensor was successfully reduced by use of the double sampling process.

A 1.2 V 12 b 60 MS/s CMOS Analog Front-End for Image Signal Processing Applications

  • Jeon, Young-Deuk;Cho, Young-Kyun;Nam, Jae-Won;Lee, Seung-Chul;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.717-724
    • /
    • 2009
  • This paper describes a 1.2 V 12 b 60 MS/s CMOS analog front-end (AFE) employing low-power and flexible design techniques for image signal processing. An op-amp preset technique and programmable capacitor array scheme are used in a variable gain amplifier to reduce the power consumption with a small area of the AFE. A pipelined analog-to-digital converter with variable resolution and a clock detector provide operation flexibility with regard to resolution and speed. The AFE is fabricated in a 0.13 ${\mu}m$ CMOS process and shows a gain error of 0.68 LSB with 0.0352 dB gain steps and a differential/integral nonlinearity of 0.64/1.58 LSB. The signal-to-noise ratio of the AFE is 59.7 dB at a 60 MHz sampling frequency. The AFE occupies 1.73 $mm^2$ and dissipates 64 mW from a 1.2 V supply. Also, the performance of the proposed AFE is demonstrated by an implementation of an image signal processing platform for digital camcorders.

L2 캐시 저 전력 영상 처리를 위한 오류 정정 회로 연구 (Study of a Low-power Error Correction Circuit for Image Processing)

  • 이상준;박종수;전호윤;이용석
    • 한국통신학회논문지
    • /
    • 제33권10C호
    • /
    • pp.798-804
    • /
    • 2008
  • 본 논문에서는 마이크로프로세서의 영상 정보 처리 시 L2 캐시의 오류검출 및 정정 회로의 저 전력을 구현하기 위한 오류정정 회로를 제안 하였다. 영상 정보 처리 시에 마이크로프로세서의 L2 캐시에 접근하는 입출력 데이터를 분석하기 위하여 Simplescalar-ARM 사용하여 데이터 입출력에 대한 빈도와 32 bit 처리를 위한 각 bit에 대한 변화율에 대해서 분석한다. 변화량이 많은 비트와 변화량이 적은 비트를 추출하고, 변화의 유사성을 가지는 비트들의 배치를 고려하여 저 전력을 구현할 수 있는 H-matrix를 제안하고 회로를 구현한다. H-spice를 이용하여 구현된 회로와 기존 마이크로프로세서에서 사용하는 Odd-weight-column code의 전력소모에 대한 비교를 위하여 시뮬레이션을 수행하였다. 실험결과 Odd-weight-column code 대비 17%의 소비전력을 감소시킬 수 있었다.

A Consistent Quality Bit Rate Control for the Line-Based Compression

  • Ham, Jung-Sik;Kim, Ho-Young;Lee, Seong-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권5호
    • /
    • pp.310-318
    • /
    • 2016
  • Emerging technologies such as the Internet of Things (IoT) and the Advanced Driver Assistant System (ADAS) often have image transmission functions with tough constraints, like low power and/or low delay, which require that they adopt line-based, low memory compression methods instead of existing frame-based image compression standards. Bit rate control in the conventional frame-based compression systems requires a lot of hardware resources when the scope of handled data falls at the frame level. On the other hand, attempts to reduce the heavy hardware resource requirement by focusing on line-level processing yield uneven image quality through the frame. In this paper, we propose a bit rate control that maintains consistency in image quality through the frame and improves the legibility of text regions. To find the line characteristics, the proposed bit rate control tests each line for ease of compression and the existence of text. Experiments on the proposed bit rate control show peak signal-to-noise ratios (PSNRs) similar to those of conventional bit rate controls, but with the use of significantly fewer hardware resources.

CCD 카메라를 사용한 저가형 Digital X-Ray 영상취득 시스템 (Low Cost Digital X-Ray Image Capture System Using CCD Camera)

  • 강용철
    • 전기학회논문지P
    • /
    • 제56권1호
    • /
    • pp.19-22
    • /
    • 2007
  • We developed a low cost digital X-Ray image capturing system using a CCD camera, instead of using the high cost image plate and image intensifier. In order to reduce the system volume, we directly made the dark box shorter than the previous model. Using the graphic language, we developed a program in order for post-processing the images captured by the CCD camera. This program improves the image resolving power.

ARM 및 FPGA를 이용한 고속 레이저 삼각측량 시스템 (Fast Laser Triangular Measurement System using ARM and FPGA)

  • 이상문
    • 대한임베디드공학회논문지
    • /
    • 제8권1호
    • /
    • pp.25-29
    • /
    • 2013
  • Recently ARM processor's processing power has been increasing rapidly as it has been applied to consumer electronics products. Because of its computing power and low power consumption, it is used to various embedded systems.( including vision processing systems.) Embedded linux that provides well-made platform and GUI is also a powerful tool for ARM based embedded systems. So short period to develop is one of major advantages to the ARM based embedded system. However, for real-time date processing applications such as an image processing system, ARM needs additional equipments such as FPGA that is suitable to parallel processing applications. In this paper, we developed an embedded system using ARM processor and FPGA. FPGA takes time consuming image preprocessing and numerical algorithms needs floating point arithmetic and user interface are implemented using the ARM processor. Overall processing speed of the system is 60 frames/sec of VGA images.