• Title/Summary/Keyword: low oxygen pressure

Search Result 434, Processing Time 0.025 seconds

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

Light and bias stability of c-IGO TFTs fabricated by rf magnetron sputtering

  • Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.265.2-265.2
    • /
    • 2016
  • Oxide thin film transistors (TFTs) have attracted considerable interest for gate diver and pixel switching devices of the active matrix (AM) liquid crystal display (LCD) and organic light emitting diode (OLED) display because of their high field effect mobility, transparency in visible light region, and low temperature processing below $300^{\circ}C$. Recently, oxide TFTs with polycrystalline In-Ga-O(IGO) channel layer reported by Ebata. et. al. showed a amazing field effect mobility of $39.1cm^2/Vs$. The reason having high field effect mobility of IGO TFTs is because $In_2O_3$ has a bixbyite structure in which linear chains of edge sharing InO6 octahedral are isotropic. In this work, we investigated the characteristics and the effects of oxygen partial pressure significantly changed the IGO thin-films and IGO TFTs transfer characteristics. IGO thin-film were fabricated by rf-magnetron sputtering with different oxygen partial pressure ($O_2/(Ar+O_2)$, $Po_2$)ratios. IGO thin film Varies depending on the oxygen partial pressure of 0.1%, 1%, 3%, 5%, 10% have been some significant changes in the electrical characteristics. Also the IGO TFTs VTH value conspicuously shifted in the positive direction, from -8 to 11V as the $Po_2$ increased from 1% to 10%. At $Po_2$ was 5%, IGO TFTs showed a high drain current on/off ratio of ${\sim}10^8$, a field-effect mobility of $84cm^2/Vs$, a threshold voltage of 1.5V, and a subthreshold slpe(SS) of 0.2V/decade from log(IDS) vs VGS.

  • PDF

Phase Stability of bulk $(R_{0.8}Ca_{0.2})Ba_2Cu_3O_z$ (R = Lu and Y) Compounds ($(R_{0.8}Ca_{0.2})Ba_2Cu_3O_{7-z}$ (R = Lu 및 Y)의 상 안정도 특성)

  • Bae, S.M.;Lee, H.K.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • Polycrystalline samples of $(R_{0.8}Ca_{0.2})Ba_2Cu_3O_{7-z}$ (R = Lu and Y) were synthesized by a solid-state reaction route, and the phase stabilities were examined by heating at temperatures between $800^{\circ}C$ and $900^{\circ}C$ in various atmospheres. A comparative analyses of the x-ray diffraction data of the $(Lu_{0.8}Ca_{0.2})Ba_2Cu_3O_{7-z}$ and $(Y_{0.8}Ca_{0.2})Ba_2Cu_3O_{7-z}$ compounds showed that the 123 phase of both compounds is stable under heating in air and $O_2$ of 1 atm. However, contrary to the $(Y_{0.8}Ca_{0.2})Ba_2Cu_3O_{7-z}$ compound, the $(Lu_{0.8}Ca_{0.2})Ba_2Cu_3O_z$ compound was found to become unstable when heated in the low oxygen partial pressure below about 8 % $O_2\;in\;N_2$, Considering the instability of parent $LuBa_2Cu_3O_z$ compound, this result suggests that the phase stability of Lu-based 123 compounds is sensitive to both the composition and the oxygen partial pressure.

  • PDF

A Study on the Surface Oxidation Behavior of Cube-textured Nickel Substrate (양축 정렬된 니켈기판의 표면 산화반응 연구)

  • Ahn Ji-hyun;Kim Byeong-Joo;Kim Jae-Geun;Kim Ho-Jin;Hong Gye-Won;Lee Hee-Gyoun;Yoo Jai-Moo;Pradeep Halder
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • We investigated the surface oxidation behavior of cube-textured polycrystalline nickel at various oxidation conditions. Cube-textured NiO film was formed on a cube-textured polycrystalline nickel regardless of oxidation conditions but different growth behavior of NiO crystals was observed depending on the oxidation conditions. The introduction of water vapor into $O_2$ did not affect the texture evolution, but rough and porous microstructure was developed. Microstructure of NiO film tends to be denser as the oxygen partial pressure increases. It is interesting that (111) peak of theta - two theta diffraction pattern started to get stronger in air atmosphere and (111) plane became the major texture in the substrate oxidized in high purity argon gas. Small amount of high index crystallographic plane NiO peak crystal was observed when $N_{2}O$ was used as an oxidant while only (200) plane crystal was formed in dry $O_2$ atmosphere. Flat and smooth surface was changed into rough faceted one when ramping rate to oxidation temperature was faster. The grain size of NiO was decreased when the oxygen partial pressure was low. It was also observed that the modification of nickel surface suppressed the development of (200) texture.

  • PDF

Surface Modification Effect and Mechanical Property of para-Aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Myung-Soon;Kim, Sam-Soo;Choi, Jae-Young;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • para-Aramid fibers were treated by low-temperature plasma to improve the adhesion. The surface of para-aramid fibers were treated with gaseous plasma of several discharge power and treatment time in oxygen gas at 1Torr pressure. The treated fibers at low-temperature plasma were taken oxygen-containing functional groups and micro-crator on the surface. The modified fibers were measured by dynamic contact angle analyzer and XPS(X-ray photoelectron spectroscopy). The Interfacial adhesion properties of aramid fabric and polyurethane resin were determined by T-peel test. The surface of aramid fibers were observed by FE-SEM photographs. It was found that surface modification and chemical component ratio of the aramid fibers were improved wettability and adhesion characterization.

Hydrogen Production by the Photocatalystic Effects in the Microwave Water Plasma

  • Jang, Soo-Ouk;Kim, Dae-Woon;Koo, Min;Yoo, Hyun-Jong;Lee, Bong-Ju;Kwon, Seung-Ku;Jung, Yong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.284-284
    • /
    • 2010
  • Currently, hydrogen has been produced by Steam Reforming or partial oxidation reforming processes mainly from oil, coal, and natural gas and results in the production of $CO_2$. However, these are influenced greatly on the green house effect of the earth. so it is important to find the new way to produce hydrogen utilizing water without producing any environmentally harmful by-products. In our research, we use microwave water plasma and photocatalyst to improve dissociation rate of water. At low pressure plasma, electron have high energy but density is low, so temperature of reactor is low. This may cause of recombination in the generated hydrogen and oxygen from splitting water. If it want to high dissociation rate of water, it is necessary to control of recombination of the hydrogen and oxygen using photocatalyst. We utilize the photocatalytic material($TiO_2$, ZnO) coated plasma reactor to use UV in the plasma. The quantity of hydrogen generated was measured by a Residual Gas Analyzer.

  • PDF

Nonstoichiometry of the Tungsten Oxide (산화 텅스텐의 비화학량론)

  • Ryu, Kwang Hyun;Oh, Eung Ju;Kim, Keu Hong;Yo, Chul Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.157-162
    • /
    • 1995
  • The x values and electrical conductivities of the nonstoichiometric compounds $WO_{3-x}$ have been measured in the temperature range from 350 to 700$^{\circ}C$ under oxygen partial pressure of $2{\times}10_{-1}\;to\;1{\times}10_{-5}$ atm. The enthalpy of the defect formation shows an endothermic process, and the oxygen pressure dependence of the defect formation or 1/n varies from -1/5.2 to -1/5.9. The activation energy and 1/n value for the electrical conductivity are 0.24~0.29 eV and -1/4.3~-1/7.6, respectively. The Tungsten Oxide as a n-type semiconductor has predominently defect model of singly charged oxygen vacancy at low temperature, and of doubly charged oxygen vacancy at high temperature.

  • PDF

Electrical Conductivity of the Solid Solutions X $ZrO_2+ (1-X) Yb_2O_3; 0.01{\leq}X{\leq}0.09$

  • Choi Byoung Ki;Jang Joon Ho;Kim, Seong Han;Kim, Hong Seok;Park, Jong Sik;Kim Yoo Young;Kim, Don;Lee Sung Han;Yo Chul Hyun;Kim Keu Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.248-252
    • /
    • 1992
  • $ZrO_2-dopedYb_2O_3solid$ solutions containing 1, 3, 5, 7 and 9 mol% $ZrO_2were$ synthesized from spectroscopically pure $Yb_2O_3$ and $ZrO_2$ powders and found to be rare earth C-type structure by XRD technique. Electrical conductivities were measured as a function of temperatures from 700 to $1050^{\circ}C$ and oxygen partial pressures from 1${\times}$$10^-5$ to 2${\times}$ $10^-1$atm. The electrical conductivities depend simply on temperature and the activation energies are determined to be 1.56-1.68 $_eV$. The oxygen partial pressure dependence of the electrical conductivity shows that the conductivity increases with increasing oxygen partial pressure, indicating p-type semiconductor. The $PO_2$ dependence of the system is nearly power of 1/4. It is suggested from the linearity of the temperature dependence of electrical conductivity and only one value of 1/n that the solid solutions of the system have single conduction mechanism. From these results, it is concluded that the main defects of the system are negatively doubly charged oxygen interstitial in low. $ZrO_2doping$ level and negatively triply charged cation vacancy in high doping level and the electrical conduction is due to the electronic hole formed by the defect structure.

Syngas Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor (가압 유동층 반응기에서 산소공여입자의 합성가스 연소 특성)

  • Park, Sang-Soo;Lee, Dong-Ho;Choi, Won-Kil;Ryu, Ho-Jung;Rhee, Young-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.83-92
    • /
    • 2012
  • Syngas combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using simulated syngas and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction conditions and no NO emission at oxidation conditions. Moreover, OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration with temperature. However, fuel conversion and $CO_2$ selectivity increased and CO emission decreased as pressure and gas residence time increased.

The effects of oxygen on selective Si epitaxial growth using disilane ane hydrogen gas in low pressure chemical vapor deposition ($Si_2H_6$$H_2$ 가스를 이용한 LPCVD내에서의 선택적 Si 에피텍시 성장에 미치는 산소의 영향)

  • 손용훈;박성계;김상훈;이웅렬;남승의;김형준
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2002
  • Selective epitaxial growth(SEG) of silicon were performed at low temperature under an ultraclean environment below $1000^{\circ}C$ using ultraclean $Si_2H_6$ and $H_2$ gases ambient in low pressure chemical vapor deposition(LPCVD). As a result of ultraclean processing, epitaxial Si layers with good quality were obtained for uniform and SEG wafer at temperatures range 600~$710^{\circ}C$ and an incubation period of Si deposition only on $SiO_2$ was found. Low-temperature Si selectivity deposition condition and epitaxy on Si were achieved without addition of HCl. The epitaxial layer was found to be thicker than the poly layer deposited over the oxide. Incubation period prolonged for 20~30 sec can be obtained by $O_2$addition. The surface morphologies & cross sections of the deposited films were observed with SEM, The structure of the Si films was evaluated XRD.