• Title/Summary/Keyword: low oxygen pressure

Search Result 434, Processing Time 0.033 seconds

Double Pulse Raman-Laser Induced Plasma Spectroscopy System for Space Exploration (우주 탐사를 위한 이중펄스 라만-레이저 유도 플라즈마 분광 시스템 개발 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.479-487
    • /
    • 2020
  • A new double-pulse laser system that combines Raman and laser induced plasma spectroscopy (LIPS) in a single unit is proposed. The study attempts to enhance the laser induced plasma signals while simultaneously extracting the desired molecular signals from Raman spectroscopy. In low pressure conditions such as the lunar atmosphere, the measuring of plasma emission is hard because of the low electron density and short persistence time causing a rapid plasma expansion. Furthermore, in the integration of the detecting system aimed at space exploration, the minimization of laser system is important in terms of the payload mass. Simultaneous molecular and atomic detection that gave highly resolved spectral data at pressure below 0.07 torr is demonstrated amongst eight rock samples test. The plasma stacking produced from the double-pulse laser enhanced the signal intensity of calcium and oxygen lines in calcite matrix by twofold, compared to a conventional LIPS.

Effect of TaB2 Addition on the Oxidation Behaviors of ZrB2-SiC Based Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Zirconium diboride (ZrB2) and mixed diboride of (Zr0.7Ta0.3)B2 containing 30 vol.% silicon carbide (SiC) composites were prepared by hot-pressing at $1800^{\circ}C$. XRD analysis identified the high crystalline metal diboride-SiC composites at $1800^{\circ}C$. The TaB2 addition to ZrB2-SiC showed a slight peak shift to a higher angle of 2-theta of ZrB2, which confirmed the presence of a homogeneous solid solution. Elastic modulus, hardness and fracture toughness were slightly increased by addition of TaB2. A volatility diagram was calculated to understand the oxidation behavior. Oxidation behavior was investigated at $1500^{\circ}C$ under ambient and low oxygen partial pressure (pO2~10-8 Pa). In an ambient environment, the TaB2 addition to the ZrB2-SiC improved the oxidation resistance over entire range of evaluated temperatures by formation of a less porous oxide layer beneath the surface SiO2. Exposure of metal boride-SiC at low pO2 resulted in active oxidation of SiC due to the high vapor pressure of SiO (g), and, as a result, it produced a porous surface layer. The depth variations of the oxidized layer were measured by SEM. In the ZrB2-SiC composite, the thickness of the reaction layer linearly increased as a function of time and showed active oxidation kinetics. The TaB2 addition to the ZrB2-SiC composite showed improved oxidation resistance with slight deviation from the linearity in depth variation.

Fabrication of Ultrathin Silicon Oxide Layer by Low Pressure Rapid Thermal Oxidation and Remote Plasma Oxidation (저압급속열산화법과 플라즈마확산산화법에 의한 실리콘 산화박막의 제조)

  • Ko, Cheon Kwang;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.408-413
    • /
    • 2008
  • In this work, the use of LPRTO (low pressure rapid thermal oxidation) and remote plasma oxidation was evaluated for the preparation of ultra thin silicon oxide layer with less than 5 nm. The silicon oxide thickness grown by LPRTO was rapidly increased and saturated. The maximum thickness could be controlled at about 5 nm. As RF power and oxygen flow rate at a remote plasma oxidation increased, the behavior of oxide growth was almost the same as that of LPRTO. The oxide thickness of 4 nm was the maximum obtained by a remote plasma oxidation in this work. The quality of silicon oxide grown by LPRTO was comparable to the thermally grown conventional oxide.

Growth and characterizations of INAlAs epilayers and InGaAs/INAlAs quantum well structures by low pressure metalorganic chemical vapor deposition (저압 유기금속 화학증착법을 이용한 InAIAs 에피층과 InGaAs/InAIAs 양자 우물 구조의 성장과 분석)

  • 유경란;문영부;이태완;윤의준
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.328-333
    • /
    • 1998
  • Lattice-matched InAIAs epilayers were grown on (001) InP substrate by low pressure metalorganic chemical vapor deposition. The effects of growth conditions on the properties of InAIAs were analyzed, and InGaAs/InAIAs single and multiple quantum wells were successfully grown. It was observed that the optical property of InAIAs epilayers was improved in the temperature range of 620~$700^{\circ}C$ as the growth temperature increased due to the reduction of oxygen incorporation, however, the crystallinity decreased at temperatures higher than $750^{\circ}C$ due to the degraded crystallinity of the bufter layers. The enhanced incorporation of AI into epilayer was observed at high $AsH_3$flow rates and it was explained in terms of the differences in bond strengths of AI-As and In-As. The measured photoluminescence peak energies from InGaAs/InAIAs single quantum wells were consistent with the calculated ones based on transfer matrix method. High-order satellite peaks and fine thickness fringes were observed by high-resolution x-ray diffraction, implying that the high-quality multiple quantum wells with abrupt heterointerfaces were grown.

  • PDF

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Characteristics of Bovine Teeth Whitening in Accordance with Gas Environments of Atmospheric Pressure Nonthermal Plasma Jet

  • Sim, Geon Bo;Kim, Yong Hee;Kwon, Jae Sung;Park, Daehoon;Hong, Seok Jun;Kim, Young Seok;Lee, Jae Lyun;Lee, Gwang Jin;Lim, Hwan Uk;Kim, Kyung Nam;Jung, Gye Dong;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.250.2-250.2
    • /
    • 2014
  • Currently, teeth whitening method which is applicable to dental surgery is that physician expertises give medical treatment to teeth directly dealed with a high concentration of hydrogen peroxide and carbamide peroxide. If hydrogen peroxide concentration is too high for treatment of maximized teeth whitening effect [1], it is harmful to the human body [2]. To the maximum effective and no harmful teeth whitening effect in a short period of time at home, we have observed the whitening effect using carbamide peroxide (15%) and a low-temperature atmospheric pressure plasma jet which is regulated by the Food and Drug Administration. The gas supplied conditions of the non-thermal atmospheric pressure plasma jet was with the humidified (0.6%) gas in nitrogen or air at gas flow rate of 1000 sccm. Also, the measurement of chemical species from the jet was carried out using the optical emission spectroscopy (OES), the evidence of increased reactive oxygen species compared to non-humidified plasma jet. We have found that the whitening effect of the plasma is very excellent through this experiment, when bovine teeth are treated in carbamide peroxide (15%) and water vapor (0.2 to 1%). The brightness of whitening teeth was increased up to 2 times longer in the CIE chromaticity coordinates. The colorimetric spectrometer (CM-3500d) can measure color degree of whitening effect.

  • PDF

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

Exergy Analysis of Cryogenic Air Separation Unit for Oxy-fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 엑서지 분석)

  • Choi, Hyeung-chul;Moon, Hung-man;Cho, Jung-ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • In order to solve the global warming and reduce greenhouse gas emissions, $CO_2$ capture technology was developed by applying oxy-fuel combustion. But there has been such a problem that its economic efficiency is low due to the high price of oxygen gases. ASU is known to be most suitable method to produce large quantity of oxygen, to reduce the oxygen production cost, the efficiency of ASU need to be improved. To improve the efficiency of ASU, exergy analysis can be used. The exergy analysis provides the information of used energy in the process, the location and size of exergy destruction. In this study, the exergy analysis was used for process developing and optimization of large scale ASU. The process simulation of ASU was conducted, the results were used to calculate the exergy. As a result, to reduce the exergy loss in the cold box of ASU, a lower operating pressure process was suggested. It was confirmed the importance of heat leak and heat loss reduction of cold box. Also, the unit process of ASU which requires thermal integration was confirmed.

Oxidation of Elemental Mercury using Dielectric Barrier Discharge Process (유전체 장벽 방전을 이용한 원소수은의 산화특성)

  • Byun, Youngchul;Ko, Kyung Bo;Cho, Moo Hyun;NamKung, Won;Shin, Dong Nam;Koh, Dong Jun;Kim, Kyoung Tae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.183-189
    • /
    • 2007
  • We have investigated the oxidation of gas phase elemental mercury using dielectric barrier discharge (DBD). In the DBD process, active species such as $O_3$, OH, O and $HO_2$ are generated by collisions between electrons and gas molecules. Search active species convert elemental mercury into mercury oxide which is deposited into the wall of DBD reactor because of its low vapor pressure. The oxidation efficiency of elemental mercury has been decreased from 60 to 30% by increasing the initial concentration of the elemental mercury from 72 to $655{\mu}g/Nm^3$. The gas retention time at the DBD reactor has showed the little effect on the oxidation efficiency. The more oxygen concentration has induced the more oxidation of elemental mercury, whereas there has been no appreciable oxidation within pure $N_2$ discharge. It has indicated that oxygen atom and ozone, generated in air condition determine the oxidation of elemental mercury.

Photolysis Improvement of Toluene in 50%TiO2/6%WO3 Sol Solutions Sensitized by Acetone (50%TiO2/6%WO3 졸 용액에서의 톨루엔 처리에 대한 아세톤의 광활성 증가효과)

  • Shin, Hye-Seung;Kim, Jae-Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.261-268
    • /
    • 2012
  • Objectives: The photocatalytic degradation of toluene in a batch mode photoreactor for the purpose of the hazardous waste treatment was investigated. Methods: Kinetic experiments using a low pressure mercury lamp (Lambda Scientific Pty Ltd, 50 Watt) emitting both UV and visible light were performed at $31^{\circ}C$ over toluene concentrations ranging from 10 to 50 mg/l in water with $50%TiO_2/6%WO_3$ (TW) concentration of 1 g/l at a pH of 6. Results: Kinetic studies showed that $50%TiO_2/6%WO_3$ (TW) photocatalyst was highly active in toluene degradation; we observed that 99% of the pollutant was degraded after six hours under visible irradiation; furthermore, we observed that adsorption onto TW catalyst was responsible for the decrease of toluene with pseudo-first order kinetics. It was also found that oxygen as a radical source in the sol medium played a significant role in affecting the photodegradation of toluene, especially with a two-fold elevation. This increase was achieved by a more than four-fold elevation of the photodegradation of toluene in the presence of acetone than without, presumably via an energy transfer mechanism. Conclusions: We concluded that photodegradation in acetone and oxygen molecules along with TW was an effective method for the removal of toluene from wastewater.