• Title/Summary/Keyword: low loading

Search Result 1,580, Processing Time 0.033 seconds

A Simulation Technique for the Characterization of the Low-bit-rate Household AC Power Line Communication Channel (저 비트율 전력선 모뎀에 대한 저압 댁내망의 채널 특성 시뮬레이션 기법에 관한 연구)

  • An, Nam-Ho;Jeong, Tae-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.5
    • /
    • pp.197-202
    • /
    • 2002
  • In this paper, the characteristics of the household AC power line network is analyzed for the low bit rate powerline communication (PLC) in the frequency range from 10㎑ to 450㎑ The PLC channel transfer characteristics including its characteristic impedance are derived based on the network topology which is constructed with the household power lines loaded with the various types of electric apparatus. Both the distributed circuit analysis and the lumped circuit model based analysis are applied for the characterization of the PLC channel and the results are compared by the computer simulations. The analysis illustrates very well the adverse effects caused by the loading of electric apparatus and as well those casued by the reflection of wavers in the household AC Power line communication network.

Analytical Study on Concrete Strengthened with FRP Sheet under Low-velocity Impact Loading (FRP Sheet로 보강된 콘크리트의 저속 충격 저항 성능에 대한 해석적 평가)

  • Kim, Yun-Ji;Yoo, Doo-Yeol;Lee, Seul-Kee;Kim, Mi-Hye;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.159-160
    • /
    • 2010
  • Due to the characteristics of high toughness, FRP is a valuable material to apply to the structures that have to withstand the blast or impact loads. FEM analyses for the concrete beams flexurally strengthened in tension part with FRP sheets were performed to improve the low-velocity impact resistance.

  • PDF

Low Cycle Fatigue Characteristics of the Railway Wheels and Axles (차륜 및 차축 재료의 저주기 피로특성)

  • Kim D. J.;Seok C. S.;Seo J. W.
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.427-433
    • /
    • 2005
  • Railway wheelset is the most essential part which undergoes severe cyclic loadings. In recent years, there has been increasing need for insuring the safety of running as the speed of the railway vehicles is getting higher. So it is required on the assessment of fatigue characteristics of the wheelset to consider plastic deformation which might be probable in the severe loading condition. In this study, total-strain controlled low cycle fatigue(LCF) test were performed to observe the LCF behaviors of the railway wheels and axles using companion specimens method. From the experimental results, the cyclic mechanical properties have been evaluated and total strain amplitude versus life relationship have been derived using the empirical Coffin-Manson law.

  • PDF

Effect of solenoid valves on the response characteristics of a hydraulic position-control system (솔레노이드 밸브가 유압위치제어 시스템의 응답특성에 미치는 영향)

  • 장효환;안병홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.364-369
    • /
    • 1987
  • It has recently shown that a solenoid valve can be utilized in a hydraulic position-control system by discontinuous control methods. The objective of this study is to investigate the effects of solenoid valves on the response characteristics of a hydraulic position-control system by applying two kinds of discontinued control methods i.e., Simple On-Off (SOF) and Pusating On-Off(POF) controls. Three types of solenoid valves i.e. low-frequency, closed-center type (LF/C), high-frequency, closed-center type (HF/C), low-frequency, tandem-center type(LF/T) were used in this study. Effects of loading conditions and control parameters on the response characteristics were experimentally examined and compared each other. Pressure transients within the actuator were also studied.

  • PDF

Analysis of Fatigue Strength in Expansion Joint Weldment of Bridge (교량 신축이음창치 용접부의 피로강도 해석)

  • 이용복;정진성;박영근;김태윤;김호경;박상흡
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.73-82
    • /
    • 1998
  • This paper is especially concerned with the weldment between support beam and square bar that plays important roles in control box of Expansion Joint as a brdige structure. Fatigue strength ({TEX}$$\sigma$_{ult}${/TEX}) of the weldment is dependent on notch factor ({TEX}$K_{f}${/TEX}) become important factors to predict fatigue life. The fatigue notch sensitivity (η) for metals can be divided into two types ; high and low notch sensitivity. In this work, the Expansion Joint weldment was found to have low notch sensitivity. The maximum strain distribution during static loading is similar to the FEM analysis. Fatigue test of real structure was performed up to {TEX}$10^{6}${/TEX} cycles to be compared with predicted endurance limit.

  • PDF

Evaluation of high temperature tensile behavior and LCF properties of stainless steel for turbine disks (터빈 디스크용 스테인리스강의 고온 인장 및 저주기 피로 물성 측정)

  • Im, H.D.;Park, C.K.;Lee, K.;Rhim, S.H.;Kim, C.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.334-337
    • /
    • 2007
  • Austenitic stainless steel is used as high temperature components such as gas turbine blade and disk because of its good thermal resistance. In the present investigation, tensile and low cycle fatigue(LCF) behavior of stainless steel for turbine disks was studied at wide temperature range $20^{\circ}C\;{\sim}\;750^{\circ}C$. In the tensile tests, it was shown that elastic modulus, yield strength, ultimate tensile strength decreased when temperature increased. The effect on fatigue failure of the parameters such as plastic strain amplitude, stress amplitude and plastic strain energy density was also investigated. Coffin-Manson and Morrow models were used to adjust experimental data and predict the fatigue life behavior at different mean strain values during cyclic loading of high temperature components.

  • PDF

A Study on Discontinuous Control Methods For a Hydraulic Position-Control System(II) (유압 위치제어 시스템의 단속적 제어방식에 관한 연구 II)

  • 장효환;안병홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1282-1289
    • /
    • 1988
  • It has recently shown that a solenoid valve can be utilized in a hydraulic position-control system by discontinuous control methods. The objective of this study is to investigate the effects of solenoid valves on the response characteristics of a hydraulic position-control system by applying two kinds of discontinuous control methods i.e., Simple On-Off(SOF) and Pulsating On-Off(POF) controls. Three types of solenoid valves i.e., low-frequency, closed-center type(LF/C), low-frequency, tandem-center type(LF/T) were used in this study. Effects of loading conditions and control parameters on the response characteristics were experimentally examined and compared each other. Pressure transients within the actuator were also studied.

Shielding effects on a tall building from a row of low and medium rise buildings

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.439-449
    • /
    • 2018
  • Wind loading of a tall building built amidst a group of buildings in urban environment is always greatly affected by shielding effects. Wind tunnel tests were carried out to assess the shielding provided by a row of low-rise or medium-rise buildings upstream a square-section tall building of height-to-breadth ratio 6. Mean and dynamic wind loads on the tall building were measured at different wind incidence angles and presented as interference factors (IFs). It is found that presence of a row of upstream buildings provides significant shielding to the tall building. At normal wind incidence, the mean along-wind loads and all components of fluctuating wind loads on the tall building are always reduced by shielding. Vortex shedding seems to still occur on the upper exposed part of the tall building but the vortex excitation levels are largely reduced. The degree of shielding is found to depend on a number of arrangement parameters of the row of upstream buildings. Empirical equations are proposed to quantify the shielding effect based on the wind tunnel data.

Synthesis of Pd and Pt Based Low Cost Bimetallic Anode Electrocatalyst for Glycerol Electrooxidation in Membraneless Air Breathing Microfluidic Fuel Cell

  • Panjiara, Deoashish;Pramanik, Hiralal
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.38-57
    • /
    • 2021
  • The different weight ratios of Pd to Pt, i.e., 16:4, 10:10, 4:16 in Pd-Pt/C and Pd (20 wt. %) /C electrocatalysts with low metal loading were synthesized for glycerol electrooxidation in an air breathing microfluidic fuel cell (MFC). The cell performance on Pd-Pt (16:4)/C anode electrocatalyst was found best among all the electrocatalysts tested. The single cell when tested at a temperature of 35℃ using Pd-Pt (16:4)/C, showed maximum open circuit voltage (OCV) of 0.70 V and maximum power density of 2.77 mW/㎠ at a current density of 7.71 mA/㎠. The power density increased 1.45 times when cell temperature was raised from 35℃ to 75℃. The maximum OCV of 0.78 V and the maximum power density of 4.03 mW/㎠ at a current density of 10.47 mA/㎠ were observed at the temperature of 75℃. The results of CV substantiate the single cell performance for various operating parameters.

Design and Implementation of Low-Cost Articulate Manipulator for Academic Applications

  • Muhammad Asim Ali;Farhan Ali Shah
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2024
  • The objective of this work is to design a low cost yet fully functional 4-DOF articulate manipulator for educational applications. The design is based on general purpose, programmable smart servo motors namely the Dynamixel Ax-12. The mechanism for motion was developed by formulating the equations of kinematics and subsequent solutions for joint space variables. The trajectory of end-effector in joint variable space was determined by interpolation of a 3rd order polynomial. The solutions were verified through computer simulations and ultimately implemented on the hardware. Owing to the feedback from the built-in sensors, it is possible to correct the positioning error due to loading effects. The proposed solution offers an efficient and cost-effective platform to study the trajectory planning as well as dynamics of the manipulator.