• Title/Summary/Keyword: low loading

Search Result 1,572, Processing Time 0.028 seconds

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.

Analysis of Electrical and Physical Property of the PU/MWNT Film and Dispersion Characteristics of MWNT According to the Solvent (용매에 따른 MWNT의 분산특성과 제조된 PU/MWNT 필름의 전기적·물리적 특성 분석)

  • Kim, Jeong-Hyun;Ma, Hye-Young;Yang, Sung-Yong;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.69-78
    • /
    • 2012
  • This paper surveys the physical properties of the MWNT dispersion solution dispersed with the three types of solvents and of the polyurethane composite film for improvement of mechanical properties and electrical characteristics of PU/MWNT composite film. For this purpose, the MWNT dispersed solution was mixed with three types of solvent such as IPA, MEK and Toluene and then mixed with polyurethane (100part) with variation of loading content (0, 10, 20, 30, 40, 50 part) of MWNT dispersed solution in the ultrasonic wave dispersion apparatus. And eighteen PU/MWNT composite films were prepared as specimens. The various physical properties of these PU/MWNT films were measured and discussed with the loading content of three types of MWNT dispersed solutions. The highest absorbancy among the three types of dispersed solutions was shown in the IPA/MWNT solution. But the absorbancy of PU/MWNT films was not same as the solution. The low electrical surface and volume resistivity of PU/MWNT film were shown at the condition of 20 and 10 parts loading of IPA/MWNT dispersed solution, respectively. The low triboelectricity of PU/MWNT film was shown at the condition of above 30part loading of IPA/MWNT dispersed solution. The breaking strength and strain of PU/MWNT film prepared with IPA/MWNT dispersed solution were decreased with increasing loading content of IPA/MWNT from 10 to 40 parts. The maximum breaking strength and breaking strain according to the dispersion solution were shown on the IPA/MWNT dispersed solution. The uniform dispersion of PU/MWNT film according to the loading content of MWNT solution was shown by surface image analysis on the films dispersed with IPA.

Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

  • Henderson, David J.;Ginger, John D.;Morrison, Murray J.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.383-400
    • /
    • 2009
  • Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

Anaerobic Digestion Fish Offal(I): Effect of Reactor Configuration and Sludge Bed Fluidization on Start-up of Digester (어류 폐기물의 혐기성소화 처리(I): 반응조 형상 및 슬러지층 유동화가 소화조 Start-up에 미치는 영향)

  • Jeong Byung-Gon;Kim Byung-Hyo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.72-78
    • /
    • 2006
  • Effect of organic loading rate on digester performance was evaluated under the conditions of same surface area/reactor volume ratio and different reactor diameter. At the low loading rate of $0.4\;kg\;COD/m^3{\cdot}d$, high rate of organic removal could be obtained regardless of reactor diameter. It can be estimated that reactor configuration can not affect reactor performance at the low loading rate. However, different performance depending on reactor diameter was observed at the organic loading rate of $6\;kg\;COD/m^3{\cdot}d$. That is, volatile acid accumulation and low COD removal efficiency was observed in reactor having 6.4 cm diameter, while volatile acid was not accumulated at all and high COD removal efficiency was observed in reactor having 3 cm diameter. Such a difference of reactor performance depending on reactor diameter can be explained that sludge bed can be fluidized by evolved gas bubble in narrow reactor while sludge bed can not be fluidized by evolved gas bubble only in wide reactor. At a high organic loading rate of $20\;kg\;COD/m^3{\cdot}d$, it can be judged that there is no relation between reactor configuration and reactor performance because all reactors showed very low COD removal efficiencies regardless of reactor diameter. Sludge bed fluidization is one of the most important factors in achieving efficient start-up of anaerobic digester. Narrow and tall type reactor is favorable condition for making sludge bed fluidization at a constant surface area/reactor volume ratio. Thus, it can be judged that reactor configuration and sludge bed fluidization have great influence to reactor performance.

  • PDF

Low Cycle Fatigue Behavior of 12Cr Steel for Thermal Power Plant Steam Turbine (화력발전소 증기터빈용 12Cr 강의 저주기 피로거동)

  • Kang, Myeong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.71-76
    • /
    • 2002
  • In this study low cycle fatigue (LCF) behavior of 12Cr steel at high temperature are described. Secondly, comparisons between predicted lives and experimental lives are made for the several sample life prediction models. Two minute hold period in either tension or compression reduce the number of cycles to failure by about a factor of two. Twenty minute hold periods in compression lead to shorter lives than 2 minute hold periods in compression. Experiments showed that life predictions from classical phenomenological models have limitations. More LCF experiments should be pursued to gain understanding of the physical damage mechanisms and to allow the development of physically-based models which can enhance the accuracy of the predictions of components. From a design point-of-view, life prediction has been judged acceptable for these particular loading conditions but extrapolations to thermo-mechanical fatigue loading, for example, require more sophisticated models including physical damage mechanisms.

A Study on the Grinding Characteristics of Stainless Steel Using Intermittent Grinding Wheel (단속 연삭지석에 의한 스테인레스강의 연삭특성에 관한 연구)

  • Kweun, O-Byung;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2866-2874
    • /
    • 1996
  • In the grinding of difficult-to-materials, the major problmes of conventional grinding are grinding burn, wheel wear, grinding surface crack, loading and glazing, When a conventioanl grinding wheel is used, wheel wear and grinding surface crack easily occur in low heat conductive material and annealed steel. Intermittent grinding is suitable for diffcult-to-matrical such as stainless steel, titanium alloy, aluminum alloy and copper alloy. The purpose of this paper is to develop a new type intermittent wheel of the grinding system for improving the problem of stainless steel grinding, to observe the effect of intermittent grinding on surface quality and grinding characteristics of stainless steel grinding using intermittent grinding wheel. The characteristics of intermittent grinding system improve surface quality, low grinding temperature and low loading.

Anisotropy in Gum and Black Filled SBR and NR Vulcanizates Due to Large Deformation

  • Park, Byung-Ho;G.R. Hamed
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.268-275
    • /
    • 2000
  • After imposing a large pre-strain, anisotropy increases with increasing residual extension ratio. Gums have very low residual extension ratio and exhibit little anisotropy, while black filled SBR and especially sulfur-cured carbon black filled NR have large set and anisotropy. For carbon black filled rubber, samples subjected to tensile loading in perpendicular to the pre-strain direction have the same stress-strain curves shape as the sample without pre-strain (=isotropic samples), but slightly lower modulus. However, compared to isotropic or perpendicular directional samples to pre-strain direction, samples subjected to tensile loading in parallel to the pre-strain direction show low stress at low deformation, but have high stiffness at high deformation. Normalized anisotropy changes with strain. The normalized anisotropy for various deformations is a linear function of residual extension ratio.

  • PDF

Analysis of Elasto-Plastic Dynamic Behaviour of Plate Subjected to Load by Low Velocity Impact (저속충격 하중을 받는 판의 탄소성 동적거동 해석)

  • Huh, Gyoung-Jae;Dokko, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.158-164
    • /
    • 2000
  • In this study a computer program is developed for analyzing the elasto-plastic dynamic behaviors of the plate subjected to line-loading by a low-velocity impactor. The equilibrium equation associated with the Hertzian contact law is formulated to evaluate the transient dynamic behaviour of the impacted plate. Compared with an elastic analysis, the effects of material plasticity are presented. Consequently, in the case of elasto-plastic analysys, impulse decreases, displacements increase and contact time duration is longer than the elastic case for same finite element model. And the time variation of the impacting load is not significant due to the plasticity except at the beginning of impact duration, and the induced stresses of the plate are more realistic.

  • PDF

Creep properties and damage model for salt rock under low-frequency cyclic loading

  • Wang, Jun-Bao;Liu, Xin-Rong;Liu, Xiao-Jun;Huang, Ming
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.569-587
    • /
    • 2014
  • Triaxial compression creep tests were performed on salt rock samples using cyclic confining pressure with a static axial pressure. The test results show that, up to a certain time, changes in the confining pressure have little influence on creep properties of salt rock, and the axial creep curve is smooth. After this point, the axial creep curve clearly fluctuates with the confining pressure, and is approximately a straight line both when the confining pressure decreases and when it increases within one cycle period. The slope of these lines differs: it is greater when the confining pressure decreases than when it increases. In accordance with rheology model theory, axial creep equations were deduced for Maxwell and Kelvin models under cyclic loading. These were combined to establish an axial creep equation for the Burgers model. We supposed that damage evolution follows an exponential law during creep process and replaced the apparent stress in creep equation for the Burgers model with the effective stress, the axial creep damage equation for the Burgers model was obtained. The model suitability was verified using creep test results for salt rock. The fitting curves are in excellent agreement with the test curves, so the proposed model can well reflect the creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the fluctuations in creep deformation and creep rate as the confining pressure increasing and decreasing under different cycle periods.

A Study on Engine Performance at the Intake Air Compensation by Supercharging in the Low Speed Diesel-Atkinson Cycle (과급에 의한 흡입공기 보상 시 저속 디젤-아트킨슨사이클에서 엔진성능에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1009-1015
    • /
    • 2011
  • In this study, in the high expansion cycle was conduced by variable valve timing system composition to close intake valve late, and in the intake air reduction on the low compression was solved by supercharging pressure. In this wise, by constituting Diesel-Atkinson cycle, this study looked into a possibility of thermal efficiency improvement. As a result, there was improvement in thermal efficiency and output in a whole range of closing timing from ABDC $40^{\circ}$ to ABDC $80^{\circ}$. However, after ABDC $70^{\circ}$ of closing timing, the thermal efficiency increase was getting smaller. As the result of the study, the optimum intake valve closing timing was about ABDC $70^{\circ}$, high loading territory of engine was more effective than low loading territory, and engine operation in middle loading territory was stable. At this time, brake thermal efficiency was 12.5% higher than ordinary engine on average.