• Title/Summary/Keyword: low loading

Search Result 1,573, Processing Time 0.028 seconds

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO PLATFORM WIDTH OF FIXTURE (임플란트 고정체의 platform의 크기에 따른 유한요소법적 응력분석)

  • Chung Kyung-Min;Chung Chae-Heon;Jeong Seung-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.674-688
    • /
    • 2003
  • Statement of Problem : With increasing demand of the implant-supported prosthesis, it is advantageous to use the different platform width of the fixture according to bone quantity and quality of the patients. Purpose : The purpose of this study was to assess the loading distributing characteristics of two implant designs according to each platform width of fixture, under vertical and inclined loading using finite element analysis. Material and method : The two kinds of finite element models were designed according to each platform width of future (4.1mm restorative component x 11.5mm length, 5.0mm wide-diameter restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction, 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction and 200N at the buccal cusp in a 300 transverse direction individually Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. Results : The stresses were concentrated mainly at the cortex in both vertical and oblique load ing but the stresses in the cancellous bone were low in both vertical and oblique loading. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading. Increasing the platform width of the implant fixture decreased the stress in the supporting bone, future and abutment screw. Increased the platform width of fixture decreased the stress in the crown and platform. Conclusion : Conclusively, this investigation provides evidence that the platform width of the implant fixture directly affects periimplant stress. By increasing the platform width of the implant fixture, it showed tendency to decreased the supporting bone, future and screw. But, further clinical studies are necessary to determine the ideal protocol for the successful placement of wide platform implants.

A Study on the Optimum Design for Preventing Propelling Charge to Military Ammunition Vehicle (탄약운반장갑차의 장약 파손 방지를 위한 최적설계에 관한 연구)

  • Noh, Sang Wan;Kim, Sung Hoon;Park, Young Min;Kim, Byung Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.494-500
    • /
    • 2019
  • The purpose of this study was to determine a method to prevent damage during the transfer of loading through optimal design of loading transfer software for an ammunition-carrying armored vehicle. Typically, an ammunition carrier armored car is equipped with an automated charge transfer system. The load is intermittently damaged during the loading of the cargo, and this needs to be improved. The following improvements and verification tests were carried out. As impact speed increased, the loading speed was reduced 60%, and a special fixture utilizing a force gauge was developed and tested. If the maximum current of 11A for the servo controller is output when the load of the conveyor is generated by interference inside the loading tube, there is a possibility of charge breakage. If the maximum current is low, the load cannot be loaded. In the loading test for the ammunition carrier armored car with the actual charge, the improved design was found to be valid, as the load was not damaged and occurred nominally.

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Optimization of Selective Epitaxial Growth of Silicon in LPCVD

  • Cheong, Woo-Seok
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.503-509
    • /
    • 2003
  • Selective epitaxial growth (SEG) of silicon has attracted considerable attention for its good electrical properties and advantages in building microstructures in high-density devices. However, SEG problems, such as an unclear process window, selectivity loss, and nonuniformity have often made application difficult. In our study, we derived processing diagrams for SEG from thermodynamics on gas-phase reactions so that we could predict the SEG process zone for low pressure chemical vapor deposition. In addition, with the help of both the concept of the effective supersaturation ratio and three kinds of E-beam patterns, we evaluated and controlled selectivity loss and non-uniformity in SEG, which is affected by the loading effect. To optimize the SEG process, we propose two practical methods: One deals with cleaning the wafer, and the other involves inserting dummy active patterns into the wide insulator to prevent the silicon from nucleating.

  • PDF

Contact Pressure of Non-Pneumatic Tires with Auxetic Honeycomb Spoke (음의 각을 가지는 허니컴 스포크를 사용한 비 공압타이어의 접지압 분포)

  • Kim, Kwangwon;Kim, Dooman
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • An airless tire has advantages over the conventional pneumatic tire in terms of flat proof and maintenance free. According to the recently disclosed inventions on the airless tire, non-pneumatic tire (NPT) consists of the flexible polygon spokes. Considering the NPT structure, the spokes undergo the tension-compression cyclic loading while the tire rolls. Therefore the spokes of NPT are required to have both stiffness and resilience under the cyclic tensile-compressible loading. In general, if a material has a high stiffness, it shows a low elastic strain limit. In this paper, using the auxetic honeycomb structure with negative poissons's ratio, the spokes of NPT tire are designed to have both stiffness and resilience. Finite element based numerical simulation of the contact pressure of a NPT is carried out with ABAQUS.

  • PDF

A Study on the Mathematical Interpretation o Hydraulic Behaviour in Packing Tower (충전탑에서 수력학적 거동의 수학적 해석 연구)

  • 김석택
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.51-56
    • /
    • 2001
  • This study was carried out to interpret mathematically hydraulic behaviour in packing tower which packed 50 mm plastic Hiflow-ring with a dimension of 300 mm wide and 1,400 mm high. In view of energy saving, the recent packing. 50 mm plastic Higlow-ring was superior to conventional packings because of low pressure drop in high loads. As relative error between numerically predicted and experimentally obtained values was less then 6% in the loading and flooding point, it found that therir results appeared to be adequate. Comparison of hose two values in both dry and wet packing conditions. relative errors amount to 3.96 and 5.6%, respectively. In order to evaluate the operating characteristics of packing, the type, size, and material for packings must be estimated in various system and loads. This study is able to calculated pressure drop, hold-up, gas and liquid loads using mathematical interpretation. For these calculation, the specific constants of each packings must be calculated first all. The method of mathematical interpretation in this study turned out to be superior to the existing methods because of reduced errors at loading and flooding point.

  • PDF

Cryogenic Systems for HTS Power Cables

  • Yeom, Han-Kil;Koh, Deuk-Yong;Lee, Bong-Kyu;Kim, Ig-Seang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.133-135
    • /
    • 2003
  • Cryogenic systems are requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen at latm or sub-cooled LN2 above latm. HTS power cable needs sufficient refrigeration to overcome its low temperature heat loading. This loading typically cones in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper explains the cooling test system of 10m HTS power cable. This system is composed of storage dewar, auto fill system, core cryostat and cold-box. Storage dewar is a LN2 storage tank and auto fill system is a LN2 supply device to the sub-cooler, Core cryostat is a LN2 flow line. Cold box is a control unit of temperature and flow rate. It is composed of control valve, flow meter, sub-cooler and circulation pump, etc..

Fabrication and Properties of Self-diagnosis GFRP for Low Loading (저하중용 자기진단 GFRP의 제조와 특성)

  • Shin, Soon-Gi;Lim, Hyun-Ju;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.732-736
    • /
    • 2003
  • A CP-GFRP(Carbon Powder-Glass Fiber Reinforced Plastic) sensor was fabricated for fracture detection. The electric resistance of the sensor was measured on condition of various composition of carbon powders and thickness of bundle of glass fibers. The resistance of the sensor was decreased as the increase of the content of carbon powders and the TEX of the glass fibers. In the case of loading on CP-GFRP, because inner crack was propagated, the part of percolation structures was disconnected. These observations show the following results. The conduction of CP-GFRP sensor is due to percolation structure of carbon powders and increase of resistance is due to expansion of cracks.

An Experimental study on the Broadband Noise Generation in Axial Flow Fan (축류팬에서의 광대역소음 발생에 대한 실험적 연구)

  • Rhee, Wook;Choi, Jong-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.91-96
    • /
    • 1998
  • The broadband noise generated aerodynamically from a two-bladed axial flow fan has been measured and compared to the result of a self-noise prediction method. The prediction scheme is based on the experimental data set acquired from a series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections. For low blade loading case the comparison showed a reasonably good agreement, but as the loading becomes larger the empirical formula overpredict the sound pressure level at high frequency range. This is probably due to the use of stationary wing data for the prediction of rotating blade case, which will be quite different in their vortex strength at the blade tip.

  • PDF

A Study on Hydraulic Behavior and Desorption of $CO_2$ Gas in the Counter-current Packing Tower (역류식 충전탑에서 이산화탄소 탈착과 수력학절 거동에 관한 연구)

  • 김석택
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.94-100
    • /
    • 2000
  • This study was carried out to interpret hydraulic behavior and CO2 gas desorption in counter-current packing tower which packed 50mm plastic Hiflow-ring. The results are as follow : To compare with conventional packing, 50mm Hiflow-ring could save energy because of low pressure drop under high load. As relative error between calculated value and investigated value was less than 6% in the loading point and flooding point we found that we are predict results mathematically which occur in packing tower. The unique magnitude of packing which was used are as follows. $C_L=2.1{\times}10^{-4}$, n=0.787 so we can predict efficiency which occur

  • PDF