• Title/Summary/Keyword: low loading

Search Result 1,573, Processing Time 0.023 seconds

Effect of fibre loading and treatment on porosity and water absorption correlated with tensile behaviour of oil palm empty fruit bunch fibre reinforced composites

  • Anyakora, Anthony N.;Abubakre, Oladiran K.;Mudiare, Edeki;Suleiman, MAT
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.329-341
    • /
    • 2017
  • The challenge of replacing conventional plastics with biodegradable composite materials has attracted much attention in product design, particularly in the tensile-related areas of application. In this study, fibres extracted from oil palm empty fruit bunch (EFB) were treated and utilized in reinforcing polyester matrix by hand lay-up technique. The effect of fibre loading and combined influence of alkali and silane treatments on porosity and water absorption parameters, and its correlation with the tensile behaviour of composites was analyzed. The results showed that tensile strength decreased whilst modulus of elasticity, water absorption and porosity parameters increased with increasing fibre loading. The composites of treated oil palm EFB fibre exhibited improved values of 2.47 MPa to 3.78 MPa for tensile strength; 1.75 MPa to 2.04 MPa for modulus of elasticity; 3.43% to 1.68% for porosity and 3.51% to 3.12% for water absorption at respective 10 wt.% fibre loadings. A correlation between porosity and water absorption with tensile behavior of composites of oil palm EFB fibre and positive effect of fibre treatment was established, which clearly demonstrate a connection between processing and physical properties with tensile behavior of fibre composites. Accordingly, a further exploitation of economic significance of oil palm EFB fibres composites in areas of low-to-medium tensile strength application is inferred.

Solid-State $^{51}V$ NMR and Infrared Spectroscopic Study of Vanadium Oxide Supported on $TiO_2-ZrO_2$

  • Park, Eun Hui;Lee, Man Ho;Son, Jong Rak
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.913-918
    • /
    • 2000
  • Vanadium oxide catalyst supported on TiO2-ZrO2 has been prepared by adding Ti(OH)4-Zr(OH)4 powder to an aqueous solution of ammonium metavanadate followed by drying and calcining at high temperatures. The char-acterization ofthe prepared catalysts was performed using solid-state 51V NMR and FTIR.In thecase ofcalci-nation temperature at 773 K, vanadium oxide was in a highly dispersed state for the samples containing low loading V2O5 below 25 wt %, but for samplescontaining high loading V2O5 equal to or above 25 wt %, vana-dium oxidewas well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of TiO2-ZrO2.The ZrV2O7 compound was formed through the reactionof V2O5 and ZrO2 at 773-973 K, where-as the V3Ti6O17 compound was formedthrough the reaction of V2O5 and TiO2 at 973-1073 K. The V3Ti6O17 compound decomposed to V2O5 and TiO2 at 1173 K, which were confirmed by FTIR and 51V NMR.

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

Diagnosis of McKenzie Mechanical Syndromes for Patient with Low Back Pain : Focused on mechanical loading strategies (요통 환자를 위한 멕켄지의 역학적 증후군 진단 : 역학적 부하 전략을 중심으로)

  • Kim, Minhee
    • Archives of Orthopedic and Sports Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2018
  • Purpose: McKenzie is a widely-used and conventional clinical therapeutic exercise for patients with mechanical lower back pain. It is a well-designed assessment and classification system for the spine. Main issue: Patients with mechanical lower back pain are classified into one of three mechanical syndromes (posture, dysfunction, or derangement syndrome) by mechanical loading strategies. These methods evaluate symptomatic and mechanical responses during repeated end-range movement and sustained postures. The goal of McKenzie mechanical syndrome diagnosis is to determine directional preferences. Directional preference is a phenomenon of preference for posture or movement in one direction, which reduces or centralizes pain. However, in Korea, there is a lack of awareness of basic McKenzie mechanical syndromes diagnostic concepts. Koreans tend to think of the McKenzie method as a simple lumbar extension exercise. However, an accurate diagnosis of a mechanical syndrome must precede the application of McKenzie exercise. Conclusions: Thus, in this study, I present a classification method of McKenzie mechanical syndrome diagnosis and clinical characteristics of each mechanical syndrome.

Effects of Maleinized Polybutadiene on the Elongation and Impact Peel Strength of Epoxy Resins

  • Albin Davies;Archana Nedumchirayil Manoharan;Youngson Choe
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.162-168
    • /
    • 2024
  • The effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins including adhesion strength, elongation and impact peel resistance was investigated in this study, in which MPB is an anhydride-functionalized polybutadiene prepolymer. Different molecular weights (3.1K and 5.6K) of MPB were added to diglycidyl ether bisphenol-A (DEGBA), an epoxy resin, to increase its impact peel strength and elongation. At various loading percent (5, 10, 15, 20 and 25 wt%) of MPB in the epoxy resin, significant improvements of mechanical properties were observed. According to the comparative analysis results, the modified epoxy system with 15 wt% (3.1K) MPB exhibited the highest lap shear strength, about 40% higher than that of neat epoxy. The tensile strength and elongation steadily and simultaneously increased as the loading percent of MPB increased. The impact peel strengths at low (-40℃) and room (23℃) temperatures were substantially improved by MPB incorporation into epoxy resins. Reactive and flexible MPB prepolymer seems to construct strong nano-structured networks with rigid epoxy backbones without sacrificing the tensile and adhesion strengths while increasing impact resistance/toughness and elongation properties. For higher impact peel while maintaining adhesion and tensile strengths, approximately 10-15 wt% MPB loading in epoxy resin was suggested. Consequently, incorporation of functionalized MPB prepolymer into epoxy system is an easy and efficient way for improving some crucial mechanical properties of epoxy resins.

A Study on Fatigue Characteristics of Domestic Low-Relaxation PS Strands (국산 저이완 PS 강연선의 피로특성에 관한 연구)

  • 변근주;송하원;박상순;노병철
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.113-119
    • /
    • 1999
  • Fatigue failure is a phenomenon such that structures under cyclic service load is failed by sudden brittle manner. Therefore, in order to obtain structures safety against the fatigue failure during their service lifes, fatigue characteristics should be considered for design and analysis of the structures. As stress range of prestressed (PS) tendons, which governs fatigus characteristic of prestressed concrete (PSC) structures, increases with increased use of partial prestressig, it is more necessary to consider fatigue characteristics of PS tendons. In this paper, direct-tension fatigue experiments with special specimen-setting devices are carried out to obtain fatigue characteristics of domestic low relaxation PS strands having different diameters and PS strands connected with coupler. Then, allowable stress range of fatigue for PSC beams using low relaxation strands are presented for the fatigue examination of prestressed concrete beams applied cyclic loading.

A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles (충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Dae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.

Shearing Properties of Hard Metal Powder and Iron Powder in the Low Density Range

  • Jonsen, P.;Haggblad, H.A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1296-1297
    • /
    • 2006
  • Both plastic and elastic properties change dramatically from the beginning to the end of the compaction phase. Previous investigations have shown that powder transfer and high powder flow during initial compaction at low density affects the strength of the final component significantly. Investigated here are shear failure and elastic shear modulus in the low density range for hard metal powder and for pre-alloyed water atomized iron powder. Direct shear test equipment for sand and clay has been modified to measure the shearing properties of powder for an axial loading between 1 kPa and 500 kPa.

  • PDF

Design and Drive Characteristics of Low Voltage 8/6 SRM for Fan Application (팬구동용 저압 8/6 SRM의 설계 및 구동 특성)

  • Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1371-1376
    • /
    • 2014
  • In this paper, 4-phase switched reluctance motor(SRM) with 8-stator and 6-rotor pole structure is proposed for a high speed fan with a low voltage. The air blower has unidirectional rotation characteristics and requires a low torque ripple and noise as well as high efficiency. To achieve the requirements, voltage and current according to loading condition of limited specification is considered. Design process is to select the bore diameter, pole arc, york of stator and rotor to get a high torque and efficiency. To verify the validity of the proposed structure, finite element method(FEM) is employed to get the performances. And the converter for the proposed SRM is employed a 1.5q power converter for cost effectiveness. Prototype SRM is manufactured and tested, and the test results show this design is within the specification and good for the air blower applications.

Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime (저사이클 피로 영역에서의 Alloy 617 모재와 용접재의 파괴 시험편에 대한 거시적 및 미시적 관찰)

  • Kim, Seon Jin;Dewa, Rando Tungga;Kim, Woo Gon;Kim, Eung Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.565-571
    • /
    • 2016
  • This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately $45^{\circ}$ to the fatigue loading direction.