• Title/Summary/Keyword: low frequency noise

Search Result 1,770, Processing Time 0.028 seconds

Validation of Rotor Aeroacoustic Noise in Hovering and Low Speed Descent Flight (정지 및 저속 하강 비행하는 헬리콥터 로터의 소음 해석 및 검증)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.516-525
    • /
    • 2015
  • In this paper, the acoustic pressure of a helicopter rotor in hovering and low speed descent flight is predicted and compared with experimental data. Ffowcs Williams-Hawkings equation is used to predict the acoustic pressure. Two different wind tunnel test data are used to validate the predicted results. Boeing 360 model rotor test results are used for the low-frequency noise in hover, and HART II test results are employed for the mid-frequency noise, especially BVI noise, in low speed descent flight. A simple free-wake model as well as the state-of-the-art CFD/CSD coupling method are adopted to perform the analysis. Numerical results show good agreement against the measured data for both low-frequency and mid-frequency harmonic noise signal. The noise carpet results predicted using the FFT(Fast Fourier Transform) shows also reasonable correlation with the measured data.

Implementation of Ka-band Low Noise Block Converter For Satellite TVRO (Ka-band 위성방송수신용 저잡음 블록 변환기 구현)

  • Lim, Jin-Won;Kim, Tae-Jin;Park, Ju-Nam;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.93-100
    • /
    • 2008
  • In this paper, Low Noise Block down converter(LNB) is designed for a Ka-band satellite television receiver only(TVRO) using commercially available MMIC. Designed Low Noise Block down-converter is composed of three stage amplifiers involving input noise matched at first amplification stage, image reject band pass filter, frequency mixer and intermediate frequency amplification. Through LNB Module power budget to obtain gain and attenuation, Optimum LNB devices satisfying Ka-band LNB technical specification are selected. Experimental results of designed Ka-band LNB yields conversion gain of over $58{\pm}1dB$, noise figure of less than 1.5dB and phase noise of -94.6dBc @10KHz.

  • PDF

A Sturdy on WLAN RFIC VCO based on InGaP/GaAs HBT (InGaP/GaAs HBT를 이용한 WLAN 용 Low Noise RFIC VCO)

  • Myoung, Seong-Sik;Park, Jae-Woo;Cheon, Sang-Hoon;Yook, Jong-Gwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.155-159
    • /
    • 2003
  • This paper presents fully integrated 5 GHz band low phase noise LC tank VCO. The implemented VCO is tuned by integrated PN diode and tuning rage is $5.01{\sim}5.30$ GHz under $0{\sim}3 V$ control voltage. For good phase noise performance, LC filtering technique, common in Si CMOS process, is used, and to prevent degradation of phase noise performance by collector shot-noise and to reduce power dissipation the HBT is biased at low collector current density bias point. The measured phase noise is -87.8 dBc/Hz at 100 kHz offset frequency and -111.4 dBc/Hz at 1 MHz offset frequency which is good performance. Moreover phase noise is improved by roughly 5 dEc by LC filter. It is the first experimental result in InGaP/GaAs HBT process. The figure of merit of the fabricated VCO with LC filter is -172.1 dBc/Hz. It is the best result among 5 GHz InGaP HBT VCOs. Moreover this work shows lower DC power consumption, higher output power and more fixed output power compared with previous 4, 5 GHz band InGaP HBT VCOs.

  • PDF

A Study on the Endpoint Detection by FIR Filtering (FIR filtering에 의한 끝점추출에 관한 연구)

  • Lee, Chang-Young
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.81-88
    • /
    • 1999
  • This paper provides a method for speech detection. After first order FIR filtering on the speech signals, we applied the conventional method of endpoint detection which utilizes the energy as the criterion in separating signals from background noise. By FIR filtering, only the Fourier components with large values of [amplitude x frequency] become significant in energy profile. By applying this procedure to the 445-words database constructed from ETRI, we confirmed that the low-amplitude noise and/or the low-frequency noise are separated clearly from the speech signals, thereby enhancing the feasibility of ideal endpoint detections.

  • PDF

Acoustic Noise and Vibration Reduction of Coreless Brushless DC Motors with an Air Dynamic Bearing

  • Yang, lee-Woo;Kim, Young-Seok;Kim, Sang-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.255-265
    • /
    • 2009
  • This paper presents the acoustic noise and mechanical vibration reduction of a coreless brushless DC motor with an air dynamic bearing used in a digital lightening processor. The coreless brushless DC motor does not have a stator yoke or stator slot to remove the unbalanced force caused by the interaction between the stator yoke and the rotor magnet. An unbalanced force makes slotless brushless DC motors vibrate and mechanically noisy, and the attractive force between the magnet and the stator yoke increases power consumption. Also, when a coreless brushless DC motor is driven by a $120^{\circ}$ conduction type inverter, high frequency acoustic noise occurs because of the peak components of the phase currents caused by small phase inductance and large phase resistance. In this paper, a core-less brushless DC motor with an air dynamic bearing to remove mechanical vibration and to reduce power consumption is applied to a digital lightening processor. A $180^{\circ}$ conduction type inverter drives it to reduce high frequency acoustic noise. The applied methods are simulated and tested using a manufactured prototype motor with an air dynamic bearing. The experimental results show that a coreless brushless DC motor has characteristics of low power consumption, low mechanical vibration, and low high frequency acoustic noise.

Low Noise Characteristics of the Comformal Sensor Array's Support Structure (곡면배열 센서의 저소음화를 위한 지지구조 설계 구조)

  • Lee, Jong-Kil;Lee, Sang-Won;Seo, Hee-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.340-341
    • /
    • 2010
  • Noise reduction is an important factor to design low noise sensor array. In this paper three layers of the de-coupler in the conformal sensor array were used to investigate noise reduction. Conformal sensor array is positioned in the layers and the distance from the layer is 0.25cm~1.5cm. Transfer function in the frequency density function is investigated according to the three different positions. When increasing the embedded distance the flow noise decreased in the region of the kx>10.

  • PDF

Wind Turbine Noise (풍력발전기 소음평가)

  • Jung, Sung Soo;Jeon, Byung Soo;Seo, Jae Gap;Lee, Yong Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.431-434
    • /
    • 2014
  • Wind turbine industry is the most developing field among other renewable energy industry. As expanding wind farms, noise is the big problem to solve. This study is about wind turbine noise measuring method based on IEC 61400-11. Sound pressure levels, 1/3-octave band levels, and low frequency sound pressure levels of a 3 MW wind turbine were measured and analyzed.

  • PDF

Investigation of Frequency Dependent Sensitivity of Noise Figure on Device Parameters in 65 nm CMOS

  • Koo, Min-Suk;Jung, Hak-Chul;Jhon, Hee-Sauk;Park, Byung-Gook;Lee, Jong-Duk;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • We have investigated the noise sensitivity of low noise amplifier (LNA) at different frequency. This noise sensitivity analysis provides insights about noise parameters and it is very beneficial for making appropriate design trade-offs. From this work, the circuit designer can choose the adequate noise parameters tolerances.

Design of Ka-Band 3 Stage MMIC Low Noise Amplifiers (KaBand 3단 MMIC 저잡음 증폭기 설계)

  • 염인복;정진철;이성팔
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.216-219
    • /
    • 2000
  • A Ka Band 3-stage MMIC (Monolithic Microwave Integrated Circuits) LNA(Low Noise Amplifiers) has been designed. The MMIC LNA consists of two single-ended type amplication stapes and one balanced type amplication stage to satisfy noise figure characteristics and high gain and amplitude linearity. The 0.15um pHEMT has been used to provide a ultra low noise figure and high gain amplification. Series and Shunt feedback circuits were inserted to ensure high stability over frequency range of DC to 80 GHz. The size of designed MMIC LNA is 3100mm ${\times}$ 2400um(7.44$\textrm{mm}^2$). The on wafer measured noise figure of the MMIC LNA is less than 2.0 dB over frequency range of 22 GHz to 30 GHz.

  • PDF

The Analysis in Measurement Performance MEMS Sensor Through the Low-Noise Vibration Measurement APP (저노이즈형 진동계측 앱을 통한 MEMS 센서의 계측성능분석)

  • Jung, Young-Seok;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • With increasing number construction of high-rise building which has about 40 to 60 floors there have been many kinds of problem which related with usage from vibration. To predict response acceleration, it is important to assess correct natural frequency. However, due to the noise of MEMS sensor, it is difficult to measure dynamic characteristic such as natural frequency when measuring ambient vibration using MEMS sensor within cell phone. Therefore, a comparative analysis on vibration measuring applications was performed after measuring ambient vibration of 2 skyscrappers which have height between 133.5~244.3m that are located in Seoul and Observation tower using I-jishin APP with noise reduction function of MEMS sensor in order to verify the effectiveness of low noise type vibration measurement APP.