• 제목/요약/키워드: low flow hypoxia

검색결과 19건 처리시간 0.019초

저산소 모델에 따른 간장 기능 손상에 관한 연구 (Hepatic Injury Studied in Two Different Hypoxic Models)

  • 윤기욱;이상호;이선미
    • Biomolecules & Therapeutics
    • /
    • 제8권2호
    • /
    • pp.119-124
    • /
    • 2000
  • We hypothesized that the extent of hypoxic injury would be involved in reduction of oxygen delivery to the tissue. Livers isolated from 18 hr-fasted rats were subjected to $N_2$-induced hypoxia or low flow hypoxia. Livers were perfused with nitrogen/carbon dioxide gas for 45min or perfused with normoxic Krebs-Henseleit bicarbonate buffer (KHBB) at low flow rates around 1 ml/g liver/min far 45min, which caused cells to become hypoxic because of insufficient delivery of oxygen. When normal flow rates(4 ml/g liver/min) of KHBB (pH 7.4, 37$^{\circ}C$, oxygen/carbon dioxide gas) were restored for 30min reoxygenation injury occurred. Lactate dehydrogenase release gradually increased in $N_2$-induced hypoxia, whereas it rapidly increased in low flow hypoxia. Total glutathione in liver tissue was not changed but oxidized glutathione markedly increased after hypoxia and reoxygenation, expecially in $N_2$-induced hypoxia. Similarly, lipid peroxidation in liver tissue significantly increased after hypoxia and reoxygenation in low flow hypoxia. Hepatic drug metabolizing functions (phase I, II) were suppressed during hypoxia, especially in $N_2$-induced hypoxia but improved by reoxygenation in both models. Our findings suggest that hypoxia results in abnormalities in drug metabolizing function caused by oxidative stress and that this injury is dependent on hypoxic conditions.

  • PDF

Changes in drug metabolism during hypoxia/reoxygenation in isolated perfused rat

  • Seo, Min-Young;Cho, Tai-Soon;Lee, Sun-Mee
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.98-98
    • /
    • 1997
  • This study was done to investigate the effect of vitamin E on hypoxia/reoxygenation-induced hepatic injury in isolated perfused rat liver. Rats were pretreated with vitamin E or vehicle(soybean oil). Isolated livers from fasted 18 hours were subjected to 45min of low flow hypoxia or N$_2$ hypoxia followed by reoxygenation for 30min. The perfusion medium used was KHBB(pH 7.4) and 50${\mu}$㏖/$\ell$ of ethoxycoumarin was added to the perfusate to determine the ability of hepatic drug-metabolizing systems, In low flow hypoxia model, total glutathione and oxidised glutathione levels were significantly increased by hepoxia/reoxygenation with slight increase in LDH levels. These increases were prevented by vitamin E pretreatment. In N$_2$ hypoxia model, LDH, total glutathione and oxidized glutathione levels were increased significantly by hypoxia but restored to normal level by reoxygenation. Vitamin E had little effect on this hypoxic damage. There were no significant changes in the rate of hepatic oxidation of 7-EC to 7-HC in both hepoxic models. But, the subsequent conjugation of 7-HC by sulfate or glucuronic acid were significantly decreased by hypoxia, but restored by reoxygenation in both hypoxia models. As opposed to our expectation, treatment with vitamin E aggrevated the decrease of the rate of conjugation and even inhibited the restoration by reoxygenation. Our findings suggest that hypoxia/reoxygenation diminishes phase II drug metabolizing function and this is, in part, related to decreased energy level.

  • PDF

심근 저산소증 영상 (Imaging Hypoxic Myocardium)

  • 배상균
    • 대한핵의학회지
    • /
    • 제39권2호
    • /
    • pp.141-145
    • /
    • 2005
  • Hypoxia (decreased tissue oxygen tension) is a component of many diseases such as tumors, cerebrovascular diseases and ischemic heart diseases. Although hypoxia can be secondary to a low inspired $pO_2$ or a variety of lung disorders, the most common cause is ischemia due to an oxygen demand greater than the local oxygen supply. In the heart tissue, hypoxia is often observed in persistent low-flow states, such as hibernating myocardium. Direct "hot spot" imaging of myocardial tissue hypoxia is potentially of great clinical importance because it may provide a means of identifying dysfunctional chronically ischemic but viable hibernating myocardium. A series of radiopharmaceuticals that incorporate nitroimidazole moieties have been synthesized to detect decreased local tissue pO2. In contrast to agents that localize in proportion to perfusion, these agents concentrate in hypoxic tissue. However, the ideal agents are not developed yet and the progress is very slow. Furthermore, the research focus is on tumor hypoxia nowadays. This review introduces the myocardial hypoxia imaging with summarizing the development of radiopharmaceuticals.

Effect of Hypoxia on the Doxorubicin Sensitivity of Human MCF-7 Breast Cancer Cells

  • Lim, Soo-Jeong;Kang, He-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권5호
    • /
    • pp.287-290
    • /
    • 2007
  • Intrinsic or acquired resistance to chemotherapeutic drugs is one of the major obstacles to effective cancer treatment. Hypoxia is widespread in solid tumors as a consequence of decreased blood flow in the tumor-derived neovasculature. The recent finding of a link between hypoxia and chemoresistance prompted us to investigate whether hypoxia induces doxorubicin resistance in human MCF-7 breast cancer cells. Low oxygen concentration decreased the doxorubicin sensitivity in MCF-7 cells. The expression of p-glycoprotein, a major MDR-related transporter, and those of apoptosis-related proteins (anti-apoptotic Bcl-2, Bcl-XL and pro-apoptotic Bax) were not altered by hypoxia in MCF-7 cells. Intracellular uptake of doxorubicin was significantly decreased under hypoxic conditions. Decreased cellular uptake of doxorubicin under hypoxia may contribute to causing doxorubicin resistance in these cells. The use of agents that can modulate the doxorubicin uptake for adjuvant therapy may contribute to improving the therapeutic efficacy of doxorubicin in breast cancer patients.

혈전이 있는 축대칭 동맥류에서의 산소전달현상 (Oxygen Transport in Axisymmetric Thrombosed Aneurysm)

  • 김한일;태기식;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권4호
    • /
    • pp.295-300
    • /
    • 2002
  • 국부적 저산소증(localized hypoxia)은 산소공급의 저하로 인하여 조직세포를 파괴하고 관강압력에 대한 동맥류 벽의 저항을 현저하게 감소시킨다고 보고되고 있다. 본 연구에서는 동맥류 파열의 원인이 되는 저산소증의 기전을 이해하기 위하여 혈전의 두께에 따라 세 가지의 축대칭 동맥류 모델을 구성하여 동맥류 내 혈전을 통한 정상 층류유동 (steady laminar flow)에서의 산소전달현상(O$_2$transport phenomenon)을 유체-고체 열전달 현상과의 유사성을 이용하고 Fick의 법칙을 적용하여 해석하였다. 전산해석을 통해서 혈전이 형성된 혈관에서 산소농도는 혈관 벽에서 가장 낮게 나타났으며 혈전의 크기가 증가할수록 저산소농도(low $O_2$concentration) 영역이 혈관 벽 가까이 넓게 분포되어 저산소증의 가능성이 증가됨을 알 수 있었다 본 연구를 통해서 동맥류 내의 혈전은 구조와 크기에 따라 산소의 흐름에 주요한 영향을 미침을 확인할 수 있었다.

Effect of vitamin C on hepatic drug metabolism in hypoxia/reoxygenation

  • Lee, Hae-;Jung, Ju-Yeon;Han, Suck-Hee;Cho, Tai-Soon;Lee, Sun-Mee
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.191-191
    • /
    • 1998
  • It has been hypothesized that formation of oxygen-derived free radicals may play an important part in ischemically induced tissue injury. In this study, the effects of vitamin C treatment on hepatic reperfusion model were investigated. Livers isolated from 18 hrs fasted rats were subjected to low flow hypoxia (1 $m\ell$/g liver/min, for 45min) followed by reoxygenation (for 30min). The perfusion medium used was Krebs-Henseleit bicarbonate buffer (KHBB, pH 7.4) and vitamin C (0.25, 0.5, 1.0 and 2.0 mM) was added to perfusate. 7-Ethoxycoumarin was used as substrate of phase and metbolism. After hypoxia oxygen consumption significantly dropped but vitamin C 0.25, 0.5 and 1.0 mM treatments restored oxygen consumption to the level of control group. LDH and lipid peroxidation were not changed in all experimental groups. Oxidation, phase metabolism, significantly decreased following hypoxia but improved during reoxygenation. Vitamin C 0.25 mM treatment significantly improved the oxidation of 7-ethoxycoumarin during hypoxia and reoxygenation, but the oxidation significantly decreased by vitamin C 2.0 mM treatment. Similarly, sulfate conjugation decreased in hypoxic group, but this decrease was inhibited by vitamin C 0.25, 0.5 and 1.0 mM treatments. Our findings suggest that hypoxia/reoxygenation diminishes hepatic drug metabolizing function, vitamin C at concentration of 0.25-1.0 mM ameliorates but at higher concentration aggravates these hypoxia/reoxygenation-induced changes.

  • PDF

[18F]Labeled 2-nitroimidazole derivatives for hypoxia imaging

  • Seelam, Sudhakara Reddy;Lee, Yun-Sang;Jeong, Jae Min
    • 대한방사성의약품학회지
    • /
    • 제2권2호
    • /
    • pp.73-83
    • /
    • 2016
  • Imaging hypoxia using positron emission tomography (PET) is of great importance for cancer therapy. [$^{18}F$] Fluoromisonidazole (FMISO) was the first PET agent used for imaging tumor hypoxia. Various radiolabeled nitroimidazole derivatives such as [$^{18}F$]fluoroerythronitroimidazole (FETNIM), [$^{18}F$]1-${\alpha}$-D-(2-deoxy-2-fluoroarabinofuranosyl)-2-nitroimidazole(FAZA), 2-(2-nitroimidazol-1-yl)-N-(3,3,3-[18F]-trifluoropropyl)acetamide ([$^{18}F$]EF-3), [$^{18}F$]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), 3-[$^{18}F$]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol ([$^{18}F$]HX-4), and [$^{18}F$]fluoroetanidazole (FETA) were developed successively. However, these imaging agents still produce PET images with limited resolution; the lower blood flow in hypoxic tumors compared to normoxic tumors results in low uptake of the agents in hypoxic tumors. Thus, the development of better imaging agents is necessary.

Injury and inflammation detection by the application of microcurrent through the skin

  • Hui, Timothy;Petrofsky, Jerrold
    • Physical Therapy Rehabilitation Science
    • /
    • 제2권1호
    • /
    • pp.31-38
    • /
    • 2013
  • Objective: To determine the efficacy and reliability of measuring direct current microcurrent applied through the skin to determine injury in the underlying tissues. Design: Case control study. Methods: First, microcurrent was measured as decreased blood flow induced hypoxia in healthy subjects. Next, reliability was assessed by measuring over ten days with set variations in pressure and distance between the electrodes. Finally, measurements over sprained ankle were compared to measurements over comparable uninjured areas on the same injured subject. Results: For the blood flow test phase, microcurrent significantly decreased an average of 17% after 5 minutes (p<0.05), remained decreased for 30 seconds, and returned to non-occlusive levels after 2 minutes of normal circulation. The results indicate that the microcurrent decrease was not due to blood flow, and most likely from hypoxic cellular damage. For the reliability phase, the coefficients of variation averaged 10.3% for the shoulder, 14.8% for the low back, and 29.1% for the knee. Changing distance 2.5 cm between the electrodes resulted in insignificant changes. Changes in pressure had some significant effect after an increase in force of 2.6 N, affirming the need for consistent pressure for measurement. For the injury test phase, a significant 69% decrease occurred comparing injured areas to the same area on the uninjured side, and a significant 74% occurred comparing injured and non-injured areas on the same limb. Conclusions: Microcurrent through the skin shows promise as an objective method of assessing a soft tissue injury by detecting damage likely due to hypoxia.

  • PDF

In vitro Expansion of Umbilical Cord Blood Derived Mesenchymal Stem Cells (UCB-MSCs) Under Hypoxic Conditions

  • Yang, Jungyun;Kwon, Jihye;Kim, Miyeon;Bae, Yunkyung;Jin, Hyejin;Park, Hohyun;Eom, Young Woo;Rhee, Ki-Jong
    • 대한의생명과학회지
    • /
    • 제21권1호
    • /
    • pp.40-49
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) have the ability to self-renew and differentiate into multi-lineage cells, thus highlighting the feasibility of using umbilical cord blood-derived MSCs (UCB-MSCs) for cell-therapy and tissueengineering. However, the low numbers of UCB-MSC derived from clinical samples requires that an ex vivo expansion step be implemented. As most stem cells reside in low oxygen tension environments (i.e., hypoxia), we cultured the UCBMSCs under 3% $O_2$ or 21% $O_2$ and the following parameters were examined: proliferation, senescence, differentiation and stem cell specific gene expression. UCB-MSCs cultured under hypoxic conditions expanded to significantly higher levels and showed less senescence compared to UCB-MSCs cultured under normoxic conditions. In regards to differentiation potential, UCB-MSCs cultured under hypoxic and normoxic conditions both underwent similar levels of osteogenesis as determined by ALP and von Kossa assay. Furthermore, UCB-MSCs cultured under hypoxic conditions exhibited higher expression of OCT4, NANOG and SOX2 genes. Moreover, cells expanded under hypoxia maintained a stem cell immnunophenotype as determined by flow cytometry. These results demonstrate that the expansion of human UCB-MSCs under a low oxygen tension microenvironment significantly improved cell proliferation and differentiation. These results demonstrate that hypoxic culture can be rapidly and easily implemented into the clinical-scale expansion process in order to maximize UCB-MSCs yield for application in clinical settings and at the same time reduce culture time while maintaining cell product quality.

저산소 상태로 인한 조골세포 고사사기전에서 p-38 MAP kinase의 역할에 관한 연구 (Role of p-38 MAP Kinase in apoptosis of hypoxia-induced osteoblasts)

  • 윤정현;정애진;강경화;김상철
    • 대한치과교정학회지
    • /
    • 제33권3호
    • /
    • pp.169-183
    • /
    • 2003
  • 교정력에 의한 치아 이동은 기계적인 힘에 의하여 압박측에는 다양한 구조를 가진 치주 조직에 혈류의 변화가 생기며 국소적으로 산소 장력에도 변화가 생겨 저산소 상태 가 유발됨은 이미 확인한 바 있다. 본 연구는 치아 주위 골격을 형성하는 조골세포를 대상으로 교정적 치아 이동과 유사한 시험관내 조건을 설정하여 저산소 상태 시 유발되는 조골세포 고사조절 기전을 규명하고자 시행하였다. 생리적인 저산소증의 실험조건으로 $2\%$ 산소상태를 설정하여 저산소 하에서 세포가 고사(apoptosis) 됨을 확인하였고, stress유발 시 많은 관련을 가진 것으로 알려진 p-38 MAPK의 활성을 관찰하였다. 또한 p-38 MAPK의 억제제인 SB203580의 전처치로 인하여 세포의 죽음이 억제됨을 확인하였고, 저산소 상태 시 활성형태로 분절되는 caspase-3, -6및 9등의 세포고사관련 효소들의 활성 형태로의 분절이 억제됨을 확인하였으며 이러한 caspase의 기질인 Lamin-A등의 분절 또한 억제됨을 밝혔다. 또한 마이토콘드리아 내의 cytochrome c의 세포질내로의 이동 또한 조절됨을 확인함으로써 p-38 MAPK의 조절단계를 시사하여 주고 있다. 본 연구로 치아 이동 시 유발되는 저산소 상태 하에서 발생하는 조골세포의 고사 조절에 p-38 MAPK가 관여함을 확인하였다.