• Title/Summary/Keyword: low depth of field

Search Result 312, Processing Time 0.034 seconds

Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

  • Jung, Nuri Hyun;Shin, Youngseob;Jung, In-Hye;Kwak, Jungwon
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.226-232
    • /
    • 2015
  • Purpose: Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods: Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results: With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion: RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.

A Study on Dosimetry for Small Fields of Photon Beam (광자선 소조사면의 선량 측정에 관한 연구)

  • 강위생;하성환;박찬일
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.57-68
    • /
    • 1994
  • Purpose : The purposes are to discuss the reason to measure dose distributions of circular small fields for stereotactic radiosurgery based on medical linear accelerator, finding of beam axis, and considering points on dosimetry using home-made small water phantom, and to report dosimetric results of 10MV X-ray of Clinac-18, like as TMR, OAR and field size factor required for treatment planning. Method and material : Dose-response linearity and dose-rate dependence of a p-type silicon (Si) diode, of which size and sensitivity are proper for small field dosimetry, are determined by means of measurement. Two water tanks being same in shape and size, with internal dimension, 30${\times}$30${\times}$30cm$^3$ were home-made with acrylic plates and connected by a hose. One of them a used as a water phantom and the other as a device to control depth of the Si detector in the phantom. Two orthogonal dose profiles at a specified depth were used to determine beam axis. TMR's of 4 circular cones, 10, 20, 30 and 40mm at 100cm SAD were measured, and OAR's of them were measured at 4 depths, d$\sub$max/, 6, 10, 15cm at 100cm SCD. Field size factor (FSF) defined by the ratio of D$\sub$max/ of a given cone at SAD to MU were also measured. Result : The dose-response linearity of the Si detector was almost perfect. Its sensitivity decreased with increasing dose rate but stable for high dose rate like as 100MU/min and higher even though dose out of field could be a little bit overestimated because of low dose rate. Method determining beam axis by two orthogonal profiles was simple and gave 0.05mm accuracy. Adjustment of depth of the detector in a water phantom by insertion and remove of some acryl pates under an auxiliary water tank was also simple and accurate. TMR, OAR and FSF measured by Si detector were sufficiently accurate for application to treatment planning of linac-based stereotactic radiosurgery. OAR in field was nearly independent of depth. Conclusion : The Si detector was appropriate for dosimetry of small circular fields for linac-based stereotactic radiosurgery. The beam axis could be determined by two orthogonal dose profiles. The adjustment of depth of the detector in water was possible by addition or removal of some acryl plates under the auxiliary water tank and simple. TMR, OAR and FSF were accurate enough to apply to stereotactic radiosurgery planning. OAR data at one depth are sufficient for radiosurgery planning.

  • PDF

Study on object detection and distance measurement functions with Kinect for windows version 2 (키넥트(Kinect) 윈도우 V2를 통한 사물감지 및 거리측정 기능에 관한 연구)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1237-1242
    • /
    • 2017
  • Computer vision is coming more interesting with new imaging sensors' new capabilities which enable it to understand more its surrounding environment by imitating human vision system with artificial intelligence techniques. In this paper, we made experiments with Kinect camera, a new depth sensor for object detection and distance measurement functions, most essential functions in computer vision such as for unmanned or manned vehicles, robots, drones, etc. Therefore, Kinect camera is used here to estimate the position or the location of objects in its field of view and measure the distance from them to its depth sensor in an accuracy way by checking whether that the detected object is real object or not to reduce processing time ignoring pixels which are not part of real object. Tests showed promising results with such low-cost range sensor, Kinect camera which can be used for object detection and distance measurement which are fundamental functions in computer vision applications for further processing.

Low energy ultrasonic single beacon localization for testing of scaled model vehicle

  • Dubey, Awanish C.;Subramanian, V. Anantha;Kumar, V. Jagadeesh
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.391-407
    • /
    • 2019
  • Tracking the location (position) of a surface or underwater marine vehicle is important as part of guidance and navigation. While the Global Positioning System (GPS) works well in an open sea environment but its use is limited whenever testing scaled-down models of such vehicles in the laboratory environment. This paper presents the design, development and implementation of a low energy ultrasonic augmented single beacon-based localization technique suitable for such requirements. The strategy consists of applying Extended Kalman Filter (EKF) to achieve location tracking from basic dynamic distance measurements of the moving model from a fixed beacon, while on-board motion sensor measures heading angle and velocity. Iterative application of the Extended Kalman Filter yields x and y co-ordinate positions of the moving model. Tests performed on a free-running ship model in a wave basin facility of dimension 30 m by 30 m by 3 m water depth validate the proposed model. The test results show quick convergence with an error of few centimeters in the estimated position of the ship model. The proposed technique has application in the real field scenario by replacing the ultrasonic sensor with industrial grade long range acoustic modem. As compared with the existing systems such as LBL, SBL, USBL and others localization techniques, the proposed technique can save deployment cost and also cut the cost on number of acoustic modems involved.

Ultra-precision Grinding Optimization of Mold Core for Aspheric Glass Lenses using DOE and Compensation Machining (실험계획법과 보정가공을 이용한 비구면 유리렌즈 성형용 코어의 초정밀 연삭가공 최적화)

  • Kim, Sang-Suk;Lee, Yong-Chul;Lee, Dong-Gil;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.45-50
    • /
    • 2007
  • The aspheric lens has become the most popular optical component used in various optical devices such as digital cameras, pick-up lenses, printers, copiers etc. Using aspheric lenses not only miniaturizes and reduces the weight of products, but also lower prices and higher field angles can be realized. Additionally, plastic lenses are being changed to glass lenses more recently because of low accuracy, low acid-resistance and low thermal-resistance in the plastic lenses. Currently, one fabrication method of glass lenses is using a glass-mold method with a high precision mold core for mass production. In this paper, DOE (Design Of Experiments) and compensation machining were adopted to improve the surface roughness and the form accuracy of the mold core. The DOE has been done in order to discover the optimal grinding conditions which minimize the surface roughness with factors such as work spindle revolution, turbine spindle revolution, federate and cutting depth. And the compensation machining is used to generate high form accuracy of the mold core. From various experiments and analyses, we could obtain the best surface roughness 5 nm in Ra, form accuracy $0.167\;{\mu}m$ in PV.

effects of Sand Mulching on Forage Production in Newly Reclaimed Tidal Lands II. Studies on growth , dry matter accumulation and nutrient quality of selected forage crops grown on saline soils (간척지 사료작물 재배에 있어서 모래를 이용한 토양 mulching의 효과 II. 간척지 재배목초의 생육 및 건물축적형태와 사료가치에 관한 연구)

  • 김정갑;한민수
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 1990
  • A three year's field experiment was carried out on newly reclaimed tidal saline soils to evaluate the salt tolerance and growht characteristics, and their relationship to dry matter production and nutrient quality of main selected pasture species. Nine temperate grasses (14 varieties) and two forage crops (sorghum and pearl millet) were grown under different mulching treatments with medium sand and red-yellow soils (fine loamy materials of Typic Hapludults) from 1986 to 1988. Tall wheatgrass, tall fescue, reed canarygrass and alfalfa showed a good tolerance to soil salinity, especially tall wheatgrass (cv. Alkar) produced 19.6 ton/ha dry matter yield annualy under mulching treatment with medium sand depth in lcm. Pearl millet (cv. Gahi-3) was also evaluated as a salt tolerable forage species. Under salt stress in newly reclaimed tidal lands, plant showed a decrease in the assimirable leaf area (LA) as well as specific leaf area (SP. LA) and a low leaf weight ratio(LWR), and it resulted in a low concentration of crude protein and low digestible dry matter contents. Absorption of macro and micro elements in the plant on tidal lands was increased markedly.

  • PDF

Estimation of the thickness of floating silty clay sediment using dual frequency single beam echo sound system (이중 주파수 에코 사운드 시스템을 이용한 부니층 두께 조사)

  • Ha, Hee-Sang
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.219-231
    • /
    • 2002
  • Single beam echo sounding was used to delineate bathymetry sea bottom in the area of hydrography and marine navigation. This research was aimed at measuring the thickness of floating silty clay sediment with dual frequencies echo sounding system. There occur discrepancies in penetrating depth through sea beds between high frequency(200 KHz) and low(33 KHz) frequency. RI density logging was employed to characterize the floating silty clay sediment of Guangyang bay, which was chosen to investigate the proposed site for reclamation field. The volume of floating silty clay sediment was used to design by estimating size of reclamation site. The estimation strategies developed in this study will be readily applicable to measure the Pattern of sedimentation via regular hydrographic survey in the future.

  • PDF

A Study on the Breakdown Voltage Characteristics with Process and Design Parameters in Trench Gate IGBT (트렌치 게이트 IGBT 에서의 공정 및 설계 파라미터에 따른 항복 전압 특성에 관한 연구)

  • Shin, Ho-Hyun;Lee, Han-Sin;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.403-409
    • /
    • 2007
  • In this paper, effects of the trench angle($\theta$) on the breakdown voltage according to the process parameters of p-base region and doping concentrations of n-drift region in a Trench Gate IGBT (TIGBT) device were analyzed by computer simulation. Processes parameters used by variables are diffusion temperature, implant dose of p-base region and doping concentration of n-drift region, and aspects of breakdown voltage change with change of each parameter were examined. As diffusion temperature of the p-base region increases, depth of the p-base region increases and effect of the diffusion temperature on the breakdown voltage is very low in the case of small trench angle($45\;^{\circ}$) but that is increases 134.8 % in the case of high trench angle($90\;^{\circ}$). Moreover, as implant dose of the p-base region increases, doping concentration of the p-base region increases and effect of the implant dose on the breakdown voltage is very low in the case of small trench angle($45\;^{\circ}$) but that is increases 232.1 % in the case of high trench angle($90\;^{\circ}$). These phenomenons is why electric field concentrated in the trench is distributed to the p-base region as the diffusion temperature and implant dose of the p-base increase. However, effect of the doping concentration variation in the n-drift region on the breakdown voltage varies just 9.3 % as trench angle increases from $45\;^{\circ}$ to $90\;^{\circ}$. This is why magnitude of electric field concentrated in the trench changes, but direction of that doesn't change. In this paper, respective reasons were analyzed through the electric field concentration analysis by computer simulation.

Controlled Source Magnetotellurics with Vector Measurement Using Electric and Magnetic Sources (전기장 또는 자기장 송신원을 이용한 벡터 CSMT)

  • Lee, Heuisoon;Song, Yoonho
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.451-458
    • /
    • 1997
  • The horizontal magnetic dipole as well as electrical dipole was adopted as a source to compute one-dimensional electromagnetic field behavior in controlled source magnetotellurics. he Cagniard impedances due to horizontal magnetic dipole source, especially phases, showed better frequency characteristics than those due to electric one. The magnetic dipole is inferior to the electric dipole in the point of relatively weak transmitting power at low frequency. But considering high resistivity charateristics of Korean geology, the magnetic dipole source is recommended for the survey up to depth of 500 m. A vector CSMT was introduced to get more reliable data in the area of two- or three-dimensional structures. A software and interpretation technique using polarization ellipses were developed. The technique was tested by synthetic data, which provided theoretical basis of the methodology. Although CSMT has inevitable limitation of investigation depth due to practically possible source-receiver separation, we proposed to use the technique developed in this paper where MT is not available, for example, in extremely noisy area or for shallow target.

  • PDF

Uncertainty Analysis in Estimation of Roughness Coefficient Using the Field Measurement Data (현장실측에 의한 조도계수 산정의 불확실도 평가)

  • Kim, Ji-Sung;Lee, Chan-Joo;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.801-810
    • /
    • 2007
  • In this study, validity and limitation of the estimation of roughness coefficient using the measured field data are investigated and the errors of the calculated roughness coefficient are analyzed. The assumption of uniform flow led to much difference of the computed results in low flow, and this is due to change of the cross-section informations such as flow area and hydraulic radius rather than the difference of velocity head. From the comparison between the estimations of average roughness coefficient in the reach which is relatively long, the calculation using the modified Newton-Raphson method is very efficient and accurate. In the measured roughness coefficient, the errors of measured flow and stage are included and the lower flow is, the larger the magnitude of error of measured roughness coefficient is. But the error of depth and velocity associated with uncertainty of roughness coefficient is less than about 5% in the both of low and high flow, and it shows the validity of measured roughness coefficient.