• 제목/요약/키워드: low cyclic loading tests

검색결과 93건 처리시간 0.024초

다양한 Sinusoidal 하중을 받는 아스팔트콘크리트 혼합물의 Moduli 값에 대한 비교연구 (Fundamental Comparison of Moduli Values in Asphalt Concrete Mixture due to Various Sinusoidal Loadings)

  • 김낙석
    • 한국방재학회 논문집
    • /
    • 제6권1호
    • /
    • pp.39-48
    • /
    • 2006
  • 본 시험은 다양한 sine파형을 가진 인장 및 압축 하중 하에서 아스팔트 혼합물의 모듀율값 을 비교평가하기 위하여 수행되었다. 즉, 휴식시간을 가진 반복 인장 haversine 하중, 휴식시간을 가진 반복 압축 haversine 하중, 주기적 인장하중, 주기적 압축하중, 그리고 주기적 인장-압축 반복하중이라는 총 5개의 하중형태가 32, 50, 68, 86, $104^{\circ}F$ (0, 10, 20, 30, $40^{\circ}C$) 라는 5개의 온도하에서 평가되었다. 시험결과, 휴식시간을 가진 반복 haversine 하중으로 인한 아스팔트 콘크리트의 인장 및 압축 모듀율 값은 저온에서 유사한 값을 나타내었지만, 고온에서는 상이한 값을 보였다. 특히, 고온에서 압축 모듀율 값은 인장 모듀율 값보다 높은 수치를 보였다. 또한, 저온에서 일축 직접인장 시험으로부터 구한 모듀율 값은 간접 인장시험으로부터 구한 모듀율 값보다 높은 값을 나타내었다. 그러나, 고온에서는 서로 유사한 값을 보였다. 일반적으로, 휴식시간을 갖는 반복 haversine 하중을 이용하여 얻은 모듀율 값은 주기적 sine파형을 가진 하중으로부터 구한 모듀율 값보다 항상 낮은 값을 나타내었으며 그 두 가지 하중으로부터 구한 모듀율 값의 차이는 온도가 감소함에 따라 더욱 증가되었다.

Seismic behavior of steel reinforced concrete (SRC) T-shaped column-beam planar and 3D hybrid joints under cyclic loads

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.555-572
    • /
    • 2015
  • This paper presents an experimental study of three two-dimensional (2D/planar) steel reinforced concrete (SRC) T-shaped column-RC beam hybrid joints and six 3D SRC T-shaped column-steel beam hybrid joints under low cyclic reversed loads. Considering different categories of steel configuration types in column cross section and horizontal loading angles for the specimens were selected, and a reliable structural testing system for the spatial loading was employed in the tests. The load-displacement curves, carrying capacity, energy dissipation capacity, ductility and deformation characteristics of the test subassemblies were analyzed. Especially, the seismic performance discrepancies between planar hybrid joints and 3D hybrid joints were intensively compared. The failure modes for planar loading and spatial loading observed in the tests showed that the shear-diagonal compressive failure was the dominating failure mode for all the specimens. In addition, the 3D hybrid joints illustrated plumper hysteretic loops for the columns configured with solid-web steel, but a little more pinched hysteretic loops for the columns configured with T-shaped steel or channel-shaped steel, better energy dissipation capacity & ductility, and larger interlayer deformation capacity than those of the planar hybrid joints. Furthermore, it was revealed that the hysteretic loops for the specimens under $45^{\circ}$ loading angle are generally plumper than those for the specimens under $30^{\circ}$ loading angle. Finally, the effects of steel configuration type and loading angle on the seismic damage for the specimens were analyzed by means of the Park-Ang model.

AZ31 Mg 합금 압연 판재에서 하중방향에 따른 저주기 피로특성 (Effect of loading direction on the low cycle fatigue behavior of rolled AZ31 Mg alloy)

  • 박성혁;홍성구;이병호;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.77-80
    • /
    • 2008
  • Low-cycle fatigue (LCF) tests were carried out to investigate the effect of loading direction on the cyclic deformation behavior and fatigue resistance of rolled AZ31 magnesium alloy. The as-received alloy showed a strong basal texture indicating that the most of basal planes of hexagonal close-packed structure were located parallel to the rolling direction. Two types of specimens whose loading directions were oriented parallel (RD) and vertical (ND) to the rolling direction. respectively, were used for the comparison. It was found that RD specimens yielded at much lower stresses during compression, while vice versa for the ND specimens, which was mainly attributed to the formation of primary twins. This anisotropic deformation behavior resulted in the different mean stresses during the cycling of RD and ND specimens, affecting the fatigue resistance of two specimens. The ND specimen showed a superior fatigue resistance as compared to the RD specimen under strain-controlled condition.

  • PDF

Enhancement of in-plane load-bearing capacity of masonry walls by using interlocking units

  • Kayaalp, Fatma Birinci;Husem, Metin
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.475-485
    • /
    • 2022
  • This paper presents a comparative experimental study on structural behavior of the interlocking masonry walls under in-plane cyclic loading. The main purpose of this study is to increase lateral load-bearing capacities of masonry walls by using interlocking units. The interlocking units were designed by considering failure modes of masonry walls and produced using lightweight foamed concrete. To this end, three masonry walls which are hollow, fully grouted, and reinforced were constructed with interlocking units. Also, a traditional masonry brick wall was built for comparison reasons. The walls were tested under in-plane cyclic loading. Then, structural parameters of the walls such as lateral load bearing and total energy dissipation capacities, ductility, stiffness degradation as well as failure modes obtained from the tests were compared with each other. The results have shown that the walls with the interlocking units have better structural performance than traditional masonry brick walls and they may be used in the construction of low-rise masonry structures in rural areas to improve in-plane structural performance.

Geogrid로 보강된 점토지반에 축조된 대상기초의 반복하중하에서의 침하거동 (Settlement Behavior of Strip Foundation on Geogrid Reinforced Clay under Cyclic Loading)

  • 신은철;다스브라지앰
    • 한국지반공학회지:지반
    • /
    • 제11권3호
    • /
    • pp.27-36
    • /
    • 1995
  • 지오흐리드로 보강된 포화점토상에 축조된 줄기초가 낮은 빈도의 반복하중을 받았을시 발생 되는 열구침하량을 산정하기위한 실내모형 실험을 실시하였다. 실험을 실시하는 과정에서 초기 단계에는 기초에 허용정적 하중을 가하였고 연속적으로 반복하중을 가하였다. 정적하중과 반복 하중강도에 따른 기초의 최대영구침하량에 관하여 기술하였다.

  • PDF

Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1221-1236
    • /
    • 2016
  • Modular structures consist of standardized modules and their connections. A modular bridge pier is proposed to accelerate bridge construction. Multiple concrete-filled steel tubes (CFTs) using commercial steel tubes were chosen as the main members. Buckling restrained bracings and enhanced connection details were designed to prevent premature low-cycle fatigue failure upon cyclic loading. The pier had a height of 7.95 m, widths of 2.5 m and 2.0 m along the strong and weak axis, respectively. Cyclic tests were performed on the modular pier to investigate structural performance. Test results showed that four CFT columns reached yielding without a premature failure of the bracing connections. The ultimate capacity of the modular pier was reasonably estimated based on the plastic-hinge-analysis concept. The modular CFT pier with enhanced bracing showed improved displacement ductility without premature failure at the welding joints.

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

포화도 변화에 따른 슬래브궤도 혼합성토 노반의 침하 특성 (Settlement characteristics of rock/soil mixture subgrade of slab track with variation of degree of saturation)

  • 박성용;김대상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1506-1512
    • /
    • 2010
  • 산악지형이 많은 지역에서의 고속철도 건설에는 노선의 선형상의 이유로 터널구간이 많이 존재하며, 터널 건설로 발생하는 암버럭을 유용하기 위하여 노반 건설은 주로 암과 흙의 혼합성토로 이루어지고 있다. 본 연구에서는 이암을 주암으로 하는 혼합토로 이루어진 고속철도 노반의 열차반복하중에 의한 침하특성을 분석하기 위하여 모형토조 실험을 수행하였다. 특히 강우 또는 지하수위 상승에 의한 노반의 포화도 증가가 열차 반복하중 작용 시 노반의 침하특성에 미치는 영향을 분석하기 위하여 초기 포화도 조건을 변화시키면서 실험을 수행하였다. 실험결과, 낮은 포화도 조건에서는 열차반복횟수가 증가할수록 침하가 어느 일정 값에 수렴하는 결과를 나타냈으나, 일정 수준 이상의 포화도 조건에서는 침하가 급격히 증가하는 것을 알 수 있었다. 따라서 노반의 포화도를 일정수준 이하로 관리하는 것이 침하 예방에 중요한 요소임을 확인 할 수 있었다.

  • PDF

고감쇠고무와 강재슬릿이 결합된 하이브리드 댐퍼의 실험적 구조성능평가 (Experimental Structural Performance Evaluation of Hybrid Damper Combining with High Damping Rubber and Steel Slit)

  • 이준호;박병태;김유성
    • 한국공간구조학회논문집
    • /
    • 제22권4호
    • /
    • pp.23-30
    • /
    • 2022
  • It is effective to apply hybrid damping device that combine separate damping device to cope with various seismic load. In this study, HRS hybrid damper(hybrid rubber slit damper) in which high damping rubber and steel slit plate are combined in parallel was proposed and structural performance tests were performed to review the suitability for seismic performance. Cyclic Loading tests were performed in accordance with criteria presented in KDS 41 17 00 and MOE 2019. As a result of the test, the criteria of KDS 41 17 00 and MOE2019 was satisfied, and the amount of energy dissipation increased due to the shear deformation of the high-damping rubber at low displacement. Result of performing the RC frame test, the allowable story drift ratio was satisfied, and the amount of energy dissipation increased in the reinforced specimen compared to the non-reinforced specimen.

저압터빈용 로터강의 이축 피로수명예측법에 관한 연구 (Study of Axial and Torsional Fatigue Life Prediction Method for Low Pressure Turbine Rotor Steels)

  • 현중섭;송기욱;이영신
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.149-155
    • /
    • 2005
  • The rotating components such as turbine rotors in service are generally subjected to multiaxial cyclic loading conditions. The prediction of fatigue lift for turbine rotor components under complex multiaxial loading conditions is very important to prevent the fatigue failures in service. In this paper, axial and torsional low cycle fatigue tests were preformed for 3.5NiCrMo steels serviced low pressure turbine rotor of nuclear power plant. Several methods to predict biaxial fatigue life such as Tresca, von Mises and Brown & Miller's critical plane approach were evaluated to correlate the experimental results for serviced NiCrMoV steel. The fracture mode and fatigue characteristics of NiCrMoV steel were discussed based on the results of fatigue tests performed under the axial and torsional test conditions. In particular, the Brown and Miller's critical plane approach was found to best correlate the experimental data with predictions being within a factor of 2.