• Title/Summary/Keyword: low cement

Search Result 1,072, Processing Time 0.029 seconds

Field Study for Application of Soil Cementation Method Using Alkaliphilic Microorganism and Low-cost Badge (극한미생물과 저가 배지를 이용한 지반고결제의 현장 적용 연구)

  • Choi, Sun-Gyu;Chae, Kyung-Hyeon;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2015
  • In this study, a blast furnace slag with the alkaliphilic microorganism (Bacillus halodurans) alkaline activator was used to cement natural soils in the field. A low-cost and massive microbial solution for cementation of field soils was produced and compared with existing microbial culture in terms of efficiency. A field soil was prepared for three different cementation areas: a cemented ground with microbial alkaline activator (Microbially-treated soil), a cemented ground with ordinary Portland cement (Cement-treated soil), and untreated ground (Non-treated soil). The testing ground was prepared at a size of 2.6 m in width, 4 m in length, and 0.2 m in depth. After 28 days, a series of unconfined compression tests on the cement-treated and microbially-treated soils were carried out. On the other hand, a torvane test was carried out for non-treated soil. The strength of field soils treated with microorganism was 1/5 times lower than those of cement-treated soil but is 6 times higher than non-treated soil. The pH measured from microbially-treated soil was about 10, which is lower than that of cement-treated soil (pH = 11). Therefore, it is more eco-friendly than Portland cemented soils. The C-S-H hydrates were found in both cement- and microbially-treated soils through SEM-EDS analyses and cement hydrates were also found around soil particles through SEM analysis.

An Evaluation of the Structural Integrity of the Polymer-Modified Cement Waste Form (폴리머 시멘트 고화체에 대한 구조적 건전성 평가)

  • Ji, Young-Yong;Kwak, Kyung-Kil;Hong, Dae-Seok;Kim, Tae-Kuk;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2011
  • Polymer-modified cement is the composite material made by partially replacing and strengthening the cement hydrate binders of conventional mortar with polymeric modifiers such as polymer latexes and redispersible polymeric modifiers. It is known that the addition of polymer to cement mortar leads to improved quality, which would be expected to have a high chemical resistance. Therefore, the purpose of this study is to identify the improved chemical resistance, such as low permeability and low ion diffusivity, of the polymer-modified cement as a solidification agent for the radwaste. First, polymer-modified cement specimens by latex modification were prepared according to the polymer content from 0% to 30% to select the optimized polymer content. At those specimens, the water-to-cement (W/C) ratio was maintained to 33% and 50% respectively. After the much curing time, the structural integrity of specimens was evaluated through the compressive strength test and the porosity evaluation by the water immersion method. From the results, 10% of the polymer content at 33% of the W/C ratio was shown to have the most improved quality. Finally, the leaching test referredfrom ANS 16.1 for the specimens having the most improved quality was conducted. Dedicated specimens for the leaching test were then mixed with radioisotopes of $^{60}Co$ and $^{137}Cs$ at the specimen preparation.

A Fundamental Experiment on Preventing Frost Damage at Early Age of Mortar in Low Temperature using Reduction Slag (환원슬래그를 사용한 모르타르의 저온에서의 초기동해 방지에 관한 기초적 실험)

  • Min, Tae-Beom;Mun, Young-Bum;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this research, it used cement powder and reduction slag, which generates high hydration heat in hydration reaction without heat cure below $-5^{\circ}C$ degree. Purpose of final research is preventing freezing and thawing by making the compressive strength 5MPa in 3days below zero temperature due to own heat of concrete. and it is the result of physical characteristic and thermal property evaluation of reduction slag. Because reduction slag generates high hydration heat, compressive strength development is excellent. By generating highly hydration heat by $C_{12}A_7$ and $C_3A$ in reduction slag, compressive strength is developed in low temperature. In case of displacing only reduction slag without $SO_3$, it is indicated that quick-setting occurs by shortage of $SO_3$. For preventing quick-setting, gypsum is used essentially. According to this research result, in case of using reduction slag and gypsum as a ternary system, compressive strength developed 5MPa in 3 days below zero temperature. It is identified to prevent early frost damage of concrete below zero temperature.

A Study on Changes in Heavy Metal Contents in Concrete Prepared Using Coal Ashes (석탄재의 콘크리트 활용에 따른 중금속 함량변화 연구)

  • Lee, Jinwon;Choi, Seung-Hyun;Kim, Kangjoo;Kim, Seok-Hwi;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.371-379
    • /
    • 2018
  • In many countries, recycling coal ashes as backfill materials for subsided lands, abandoned mine tunnels, and road pipeline constructions by making low-strength concretes with minimal amounts of cement is frequently considered for massive treatment of coal ashes. This study investigates the variation of heavy metals in the concrete test pieces prepared for the cases of using only Portland cement as binding material, fly ash as a replacement of the cement, sand as aggregates, and disposed ashes in the ash ponds as a replacement of aggregates. Heavy metal contents were measured based on the aqua regia extraction technique following the Korean Standard for Fair Testing of Soil Contamination and the influences of each materials on the total heavy metal contents were also assessed. Results show that the cement has the highest Cu, Pb, and Zn concentrations than any other materials. Therefore, the test pieces show significant concentration decreases for those metals when the cement was replaced by fly ash. Ponded ash shows low concentrations relative to fly ash in most of the parameters but shows higher Cu and Ni, and lower Pb levels than the sand aggregate. In overall, heavy metal levels of the test pieces are regulated by mixing among the used materials. Test pieces prepared during this study always show concentrations much lower than the Worrisome Level of Soil Contamination (Area 1), which was designated by the Soil Environment Conservation Act of Korea.

An Experimental Study on Resistance of rapid Freezing and Thawing of Chloride-inhibiting Low-Heat Cement (차염성 저발열시멘트의 급속동결융해 저항성에 관한 실험적 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Ju, Min-Kwan;Kim, Tae-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.589-592
    • /
    • 2008
  • This study was conducted to assess the durability of Chloride-inhibiting Low-Heat Cement while being subjected to freezing-thawing during winter seasons. Although durability varies slightly depending on the conditions of the jobsite, frost damage to concrete resulting from repeated freezing and thawing over the course of seasonal changes is the leading cause behind lowered concrete durability. in addition, concrete that has been subjected to freezing and thawing during the winter season develops a significant amount of expansive force at the core and begins to exhibit signs of damage, such as cracking, peeling, and detachment from the aggregate. Therefore, this study fabricated test specimens using a Chloride-inhibiting Low-Heat Cement(CLC) and the widely used blast furnace slag cement(BFS) and Ordinary Portland Cement(OPC) with water-to-cement ratios of 35%, 40% and 45%, respectively, to assess the durability index of the CLC as per resistance to freezing-thawing. The specimens were then tested using the KS F 2456 method (Testing method for resistance of concrete to rapid freezing and thawing) to measure the dynamic modulus of elasticity. The dynamic modulus of elasticity measurements were then used to derive the durability indices. By comparing the durability indices, it was confirmed that CLC, BFS, and OPC all had superior durability.

  • PDF

Effect of the Amount of Attached Mortar of Recycled Aggregates on the Properties of Concrete (순환골재의 부착 모르타르량이 콘크리트의 특성에 미치는 영향)

  • Lee, Won-Ki;Choi, Jong-Oh;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.132-139
    • /
    • 2015
  • In this study, the different unit cement content by the ratio of water absorption and water-cement ratio are applied to examine the properties of the concrete used the aggregate recycled by the crushing treatment. According to the experimental results, in the mix of low strength and high water-cement ratio, both of the compressive strength is almost equal in the concrete using the recycled aggregate by the crushing treatment and the concrete using broken stones. It means that the recycled aggregate has the low effect of the amount of bonded mortar. But, in the mix of high strength and low water-cement ratio, the concrete using the recycled aggregate by the crushing treatment has 40% less of the compressive strength than that using broken stones by the effect of the amount of bonded mortar. On the other hand, after 8 weeks, the dry shrinkage of the recycled aggregate with 7% of the ratio of water absorption doubles that of the broken stones with 1% ($-350{\times}10^{-6}$), in other words $-700{\times}10^{-6}$. Thus, the dry shrinkage should be prior to any other conditions in recycling waste concrete for the aggregate for concrete. When the recycled aggregate with 3% of the ratio of water absorption is used, the compressive strength of the rich mix concrete ($450kg/m^3$ of the unit cement content) is equivalent to that of the concrete using broken stones, while in using the recycled aggregate with 7% of the ratio of water absorption, the rich mix concrete has 7% lower compressive strength than the concrete using broken stones. But, the compressive strength of the ordinary mix concrete ($350kg/m^3$ of the unit cement content) is far lower than that using broken stones.

A Fundamental Properties of the Concrete Using Coarse Particle Cement and Mineral Admixture (굵은입자 시멘트와 광물질 혼화재를 조합 사용하는 콘크리트의 기초적 특성)

  • Han, Cheon-Goo;Jang, Duk-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.131-138
    • /
    • 2010
  • This research intends to analyze the basic characteristics of cements(hereinafter "CC") with affordable price and particle distribution effective as hydration heat face which are discharged at the outlet of smashing process of ordinary portland cement(hereinafter "OPC") manufacturing process such as fluidity, rigidity, temporary insulation temperature increase amount etc to review the potential of developing "CC" to 3 ingredients low heat cement that substitutes fly ash and blast furnace slag(hereinafter "BS"). As a result of experiment, fluidity tended to decrease with increase in CC substitution rate, and increase with increase in FA+BS substitution rate. Air amount tended to slightly decrease with increase in CC substitution rate, and decrease with increase in FA+BS substitution rate. Condensation characteristics were such that condensation time was delayed with increase in CC and FA+BS substitution rate. As for the temperature rising amount by temporary insulation, peak temperature decreased with increase in CC substitution rate and increase in FA+BS substitution rate in general, and thereafter, temperature tended to decrease slowly. Compressive strength decreased with increase in CC and FA+BS substitution rate, and as aging goes on, long term strength was equivalent to plain or higher. By and large, when FA+BS was substituted to CC, fluidity and air amount tended to decrease, but hydration heat face showed good reduction effects, suggesting possibility of development to 3 ingredients low heat cement.

  • PDF

Compressive Strength and Fluidity of Low Temperature Curable Mortar Using High Early Strength Cement According to Types of Anti-freezer, Accelerator for Freeze Protection and Water Reducing Agent (조강형시멘트를 사용한 저온경화형 모르타르의 압축강도 및 유동특성에 미치는 방동제, 내한촉진제 및 감수제의 영향)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk;Lee, Han-Seung;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Min, Tae-Beom
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.405-412
    • /
    • 2016
  • In order to examine the possibility of practical use of concrete at low-temperature environment using high early strength cement with cold resistance admixture, an experimental study on workability, freezing temperature and compressive strength of the mortar with different types of anti-freezer, water reducing agent and accelerator for freeze protection at low-temperature were evaluated. Compressive strength was increased in use of anti-freezer, especially SN anti-freezer was higher than CN anti-freezer. 0min flow was increased, the 20min flow was decreased. And 20min flow was improved in use of FR, RT water reducing agent. CF, LS accelerator for freeze protection, regardless of the type of water reducing agent, compressive strength was increased.

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.

Evaluation of Air Void System and Permeability of Latex-Modified Concrete by Image Analysis Method

  • Jeong, Won-Kyong;Yun, Kyong-Ku;Hong, Seung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.41-48
    • /
    • 2007
  • Addition of latex to concrete is known to increase its durability and permeability. The purpose of this study is to analyze air void systems in latex-modified concretes using a reasonable and objective method of image analysis with such experimental variables as water-cement (w/c) ratios, latex contents (0%, 15%) and cement types (ordinary portland cement (OPC), high-early strength (HES) cement and very-early strength (VES) cement). The results are analyzed by spacing factor, air volume (content) after hardening, air void distribution and structure. Additionally, air void systems and permeability of latex-modified concrete (LMC) are compared by a correlation analysis. The results are as follows. The LMC of the same w/c ratio showed better air entraining (AE) effect than OPC with AE water reducer. The VES-LMC showed that the quantity of entrained air below $100{\mu}m$ increased more than four times. For the case of HES-LMC, microscopic entrained air between the range of 50 to $500{\mu}m$ increased greater than 7 times even in the absence of anti-foamer. Although spacing factor was measured rather low, the permeability of latex-modified concrete was good. It is construed that air void system does not have a considerable effect on the property of latex-modified concrete, but latex film (membrane) has a definite influence on the durability of LMC.