• Title/Summary/Keyword: low band gap

Search Result 305, Processing Time 0.03 seconds

Fabrication of ZnO/TiO2 Nanoheterostructure and Its Application to Photoelectrochemical Cell

  • Song, Hong-Seon;Kim, Hui-Jin;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.459.1-459.1
    • /
    • 2014
  • Because both $TiO_2$ and ZnO has superior characteristic optically and electrically, there are various of research for these materials. However, they have large band gap energy which correspond with not visible light, but UV light. To make up for this disadvantage, Quantum dots (CdS, CdSe) which can absorb the visible light could be deposited on $ZnO/TiO_2$ nanostructure so that the the photoelectrochecmical cell can absorb the light that has larger region of wavelength. Both $TiO_2$ and ZnO can be grown to one-dimensional nanowire structure at low temperature through solutional method. Three-dimensional hierarcical $ZnO/TiO_2$ nanostructure is fabricated by applying these process. Large surface area of this structure make the light absorbed more efficiently. Through type 2 like-cascade energy band structure of nanostructure, the efficient separation of electron-hole pairs is expected. Photoelectrochemical charateristics are found by using these nanostructure to photoelectrode.

  • PDF

Field Emission Characteristics a-C:F:N Film Deposited by Inductively Coupled Plasma Chemical Vapor Deposition

  • Jae, Chung-Suk;Jung, Han-Eun;Jang Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.134-139
    • /
    • 1998
  • Amorphous fluorocarbon (a-C:F) is of interest for low dielectric interlayer material, but in this work we applied this material to FED field emitter. N-doped a-C:F films were deposited by inductively coupled plasma chemical vapor deposition (ICPCVD). The Raman spectra were measured to study the film structure and inter-band optical absorption coefficients were measured using Perkin-Elmer UV-VIS-IR spectrophotometer and optical band gap was obtained using Tauc's plot. XPS spectrum and AFM image were investigated to study bond structure and surface morphology. Current-electric field(I-E) characteristic of the film was measured for the characterization of electron emission properties. The optimum doping concentration was found to be [N2]/[CF4]=9% in the gas phase. The turn-on field and the emission current density at $[N_2]/[CF_4]$=9% were found to be 7.34V/$\mu\textrm{m}$ and 16 $\mu\textrm{A}/\textrm{cm}^2$ at 12.8V/$\mu\textrm{m}$, respectively.

  • PDF

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.356.1-356.1
    • /
    • 2014
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reduction-sulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of mono-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

The Characteristics of Mg0.1Zn0.9O Thin Films on PES Substrate According to Fabricated Conditions by PLD (PLD법으로 PES 기판 위에 제작된 Mg0.1Zn0.9O 박막의 제작 조건에 따른 특성)

  • Kim, Sang-Hyun;Lee, Hyun-Min;Jang, NakWon;Park, Mi-Seon;Lee, Won-Jae;Kim, Hong-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.602-607
    • /
    • 2013
  • Concern for the TOS (Transparent Oxide Semiconductor) is increasing with the recent increase in interest for flexible device. Especially MgZnO has attracted a lot of attention. $Mg_xZn_{1-x}O$, which ZnO-based wideband-gap alloys is tuneable the band-gap ranges from 3.36 eV to 7.8 eV. In particular, the flexible substrate, the crystal structure of the amorphous as well as the surface morphology is not good. So research of MgZnO thin films growth on flexible substrate is essential. Therefore, in this study, we studied on the effects of the oxygen partial pressure on the structural and crystalline of $Mg_{0.1}Zn_{0.9}O$ thin films. MgZnO thin films were deposited on PES substrate by using pulsed laser deposition. We used XRD and AFM in order to observe the structural characteristics of MgZnO thin films. UV-visible spectrophotometer was used to get the band gap and transmittance. Crystallization was done at a low oxygen partial pressure. The crystallinity of MgZnO thin films with increasing temperature was improved, Grain size and RMS of the films were increased. MgZnO thin films showed high transmittance over 80% in the visible region.

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.287.1-287.1
    • /
    • 2013
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reductionsulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of single-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

The reflection characteristic of one-dimensional photonic crystal using by chalcogenide thin films (칼코게나이드 박막을 이용한 일차원 photonic crystal의 반사 특성)

  • Lee, Jung-Tae;Shin, Kyung;Yeo, Cheol-Ho;Ku, Dae-Sung;Kim, Jong-Bin;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.120-123
    • /
    • 2002
  • In this study it had an excellent optical characteristic, it followed in the creation rate and the refractive index regulation to the ease. Chalcogenide produced the $As_{45}Se_{45}Te_{10}$ thin film and the $MgF_{2}$ thin film. It measured thin film plan simulation, and the thin film has a 1 -dimensional photonic band gap. The chalcogenide $As_{45}Se_{45}Te_{10}$ thin film was measured with the fact that it has a high refractive index (2.6~2.9). The $As_{45}Se_{45}Te_{10}$ and $MgF_{2}$ thin film, have a high refractive index and a low refractive index, it used a simulation and planed period 5-pairs structure, the result was from 500nm to 800nm. It will be able to confirm the characteristic which most of the incidence light reflects, the He-Ne (632.8nm) laser was irradiated in the thin film which stabilized the thin film. $As_{45}Se_{45}Te_{10}$ (high refractive index layer: H) and $MgF_{2}$ (low refractive index layer: L) results which plans the thin film with glass/LHLHLLHLHL/air structure, 632.8nm against transmitance, increased a lot. An application possibility with the filter against a specific wave length was confirmed.

  • PDF

Structural, Optical and Electrical Properties of ZnO Thin Films with Zn Concentration (Zn 농도변화에 따른 ZnO 박막의 구조, 광학 및 전기적 특성 연구)

  • 한호철;김익주;태원필;김진규;심문식;서수정;김용성
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1113-1119
    • /
    • 2003
  • We used isopropanol which has low boiling point to prepare thin films at low temperature and changed mole concentration of zinc acetate from 0.3 to 1.3 mol/l. The structural, optical and electrical properties of ZnO thin films with Zn content were investigated. ZnO thin films highly oriented along the c-axis were obtained at Zn concentration of 0.7 mol/l. ZnO thin films with Zn concentration of 0.7 mol/l showed a homogeneous surface layer of nano structure. The transmittance of ZnO thin films by UV-vis. measurement was about 87% under the Zn concentration of 0.7 mol/l, but rapidly decreased over the 1.0 mol/l. The optical band gap energy was obtained from 3.07 to 3.22 eV which is very close to the band gap of bulk ZnO (3.2 eV). The electrical resistivity of ZnO thin films was about 150 $\Omega$-cm that shows little difference with Zn concentration. I-V curves of ZnO thin films exhibited typical ohmic contact properties.

Influence of Process Conditions on Properties of Cu2O Thin Films Grown by Electrodeposition (전착법을 이용한 Cu2O 박막 형성 및 공정 조건에 따른 특성 변화)

  • Cho, Jae Yu;Ha, Jun Seok;Ryu, Sang-Wan;Heo, Jaeyeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • Cuprous oxide ($Cu_2O$) is one of the potential candidates as an absorber layer in ultra-low-cost solar cells. $Cu_2O$ is highly desirable semiconducting oxide material for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and high absorption coefficient that absorbs visible light of wavelength up to 650 nm. In addition, $Cu_2O$ has other several advantages such as non-toxicity, low cost and also can be prepared with simple and cheap methods on large scale. In this work, we deposited the $Cu_2O$ thin films by electrodeposition on gold coated $SiO_2/Si$ wafers. We changed the process conditions such as pH of the solution, applied potential on working electrode, and solution temperature. Finally, we confirmed the structural properties of the thin films by XRD and SEM.

Quantum Dot Sensitized Solar Cell Using PbS/ZnO Nanowires (황화납/산화아연 나노선을 이용한 양자점 감응형 태양전지)

  • Kim, Woo-Seok;Yong, Ki-Jung
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.292-296
    • /
    • 2010
  • We fabricated quantum dot sensitized solar cells(QDSSC) using PbS as a sensitizer and measured the solar energy conversion efficiency. After growing ZnO nanowires on the substrate by low temperature ammonia solution reaction, PbS QDs were deposited on ZnO nanowires by SILAR(Successive ionic layer adsorption and reaction) method. The morphology and crystallinity of PbS/ZnO nanowires were studied by SEM and XRD. In this study, the maximum conversion efficiency of QDSSC using PbS was 0.075% at one sun, which was lower than that of QDSSC using other sensitizers. The reasons it showed relatively low efficiency are i) the probability of type-I band gap arrangement between ZnO and PbS, ii) disturbance of electron migration by the various-sized PbS band gap, iii) stability dip by the chemical reaction of PbS QDs with electrolyte. To solve these problems, researches about controlling the size distribution of PbS and new type electrolyte would be needed.