• 제목/요약/키워드: low band gap

검색결과 305건 처리시간 0.034초

몬테칼로 방법을 사용한 HgCdTe에서의 전자 전송 특성에 관한 연구 (A study on the electron transport properties in HgCdTe using monte carlo method)

  • 유상동;곽계달
    • 전자공학회논문지D
    • /
    • 제35D권2호
    • /
    • pp.40-51
    • /
    • 1998
  • Electron transport properties are investigated by Monte Carlo simulation in n-HgCdTe. The material is easily degenerated at low temperature or being slightly doped, and is characterized by small band gap and large nonparabolic factor. The degeneracy is incorporated in the Monte Carlo simulation by taking into account the electron-electron scattering and the pauli exclusion principle. In the conventional method, however, the electron-electron scattering rate was developed under the assumption of parabolic conduction band. A new formulation of the electron-electron scattering rate is develop considering the band nonparabolicity and overlap integral. The electron-electron scattering effects on the electron distribution,impact ionization coefficienty, electron temperature, drift velocity and electron energy are presented.

  • PDF

Electrical and Optical Properties of Zinc Oxide Thin Films Deposited Using Atomic Layer Deposition

  • Kim, Jeong-Eun;Bae, Seung-Muk;Yang, Hee-Sun;Hwang, Jin-Ha
    • 한국세라믹학회지
    • /
    • 제47권4호
    • /
    • pp.353-356
    • /
    • 2010
  • Zinc oxide (ZnO) thin films were deposited using atomic layer deposition. The electrical and optical properties were characterized using Hall measurements, spectroscopic ellipsometry and UV-visible spectrophotometry. The electronic concentration and the mobility were found to be critically dependent on the deposition temperature, exhibiting increased resistivity and reduced electronic mobility at low temperature. The corresponding optical properties were measured as a function of photon energy ranging from 1.5 to 5.0 eV. The simulated extinction coefficients allowed the determination of optical band gaps, i.e., ranging from 3.36 to 3.41 eV. The electronic carrier concentration appears to be related to the reduction in the corresponding band gap in ZnO thin films.

Band-III T-DMB/DAB 모바일 TV용 저전력 CMOS RF 튜너 칩 설계 (Design of a Fully Integrated Low Power CMOS RF Tuner Chip for Band-III T-DMB/DAB Mobile TV Applications)

  • 김성도;오승엽
    • 한국전자파학회논문지
    • /
    • 제21권4호
    • /
    • pp.443-451
    • /
    • 2010
  • 본 논문에서는 Band-III 지상파 디지털 멀티미디어 방송 수신용 저전력 CMOS RF 튜너 칩에 대해 기술한다. 제안된 RF 튜너 칩은 저전력의 소형 휴대단말기 개발에 적합한 Low-IF 수신 구조로 설계되었으며, 174~240 MHz의 RF 방송 신호를 수신하여 1.536 MHz 대역폭의 2.048 MHz IF 신호를 출력한다. RF 튜너 칩은 저잡음 증폭기, 이미지 신호 제거 믹스, 채널 필터, LC-VCO, PLL과 Band-gap 기준 전압 생성기 등의 모든 수신부 기능 블록들을 포함하고 있으며, 0.18 um RF CMOS 기술을 이용하여 단일 칩으로 제작되었다. 또한 전력 소모를 줄이기 위한 4단계 이득 가변이 가능한 저잡음 증폭기를 제안하였으며, Schmoock's 선형화 기법과 Current bleeding 회로 등을 이용하여 수신 성능을 개선하였다. 제작된 RF 튜너 칩의 이득 제어 범위는 -25~+88 dB, 잡음 특성(NF)은 Band-III 전체 대역에서 약 4.02~5.13 dB, 선형 특성(IIP3)은 약 +2.3 dBm 그리고 이미지 신호 제거비는 최대 63.4 dB로 측정되었다. 총 전력 소모는 1.8 V 단일 전원에서 약 54 mW로 우수하며, 칩 면적은 약 $3.0{\times}2.5mm^2$이다.

유기태양전지를 위한 작은 밴드갭 고분자의 합성과 광전특성 (Synthesis and Photovoltaic Properties of a Low Band Gap Polymer for Organic Solar Cell)

  • 우용호;이효상;박성남;최이준;김봉수
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.71-77
    • /
    • 2015
  • 본 연구에서는 전자가 풍부한 구조단위(dithienosilole 및 benzodithiophene)와 전자가 부족한 구조단위(difluorobenzothiadiazole)를 주사슬에 교대로 갖는 작은 밴드갭 공중합체를 Stille 짝지움 반응을 이용하여 합성하였다. $^1H$ NMR을 통하여 각 단계별 화합물과 고분자의 구조를 확인하였다. GPC, TGA, UV-vis 분광분석기 및 cyclic voltammetry를 이용하여 합성한 고분자의 특성을 조사하였다. 합성한 공액고분자와 $PC_{70}BM$을 1:1.5, 1:2, 1:3, 1:3.5 및 1:4의 중량비로 혼합하여 ITO/PEDOT:PSS/polymer:$PC_{70}BM/Al$의 구조로 유기태양전지 소자를 제작하여 그 광전특성을 조사하였다. 고분자:$PC_{70}BM$의 혼합비율이 1:3에서 최고 1.0%의 광전변환효율이 달성되었다. TEM 실험을 통하여 1:3 혼합비율에서 유기태양전지에 가장 적합한 나노규모로 상분리가 일어났으며, 다른 혼합비율에서는 고분자와 $PC_{70}BM$의 뭉침현상에 기인하여 태양전지 특성이 낮아졌다.

Trapping centers due to native defects in the $CdIn_2S_4$ films grown by hot wall epitaxy

  • Hong, Myung-Seuk;Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.167-168
    • /
    • 2007
  • $CdIn_2S_4$ (110) films were grown on semi-insulating GaAs (100) by a hot wall epitaxy method. Using photocurrent (PC) measurement, the PC spectra in the temperature range of 30 and 10 K appeared as three peaks in the short wavelength region. It was found that three peaks, A-, B-, and C-excitons, correspond to the intrinsic transition from the valence band states of ${\Gamma}_4(z),\;{\Gamma}_5(x),\;and\;{\Gamma}_5(y)$ to the exciton below the conduction band state of ${\Gamma}_1(s)$, respectively. The 0.122 eV crystal field splitting and the 0.017 eV spin orbit splitting were obtained. Thus, the temperature dependence of the optical band gap obtained from the PC measurement was well described by $E_g$(T)=2.7116eV - $(7.65{\times}10^{-4}\;eV/K)T^2$/(425+T). But, the behavior of the PC was different from that generally observed in other semiconductors. The PC intensities decreased with decreasing temperature. This phenomenon had ever been reported at a PC experiment on the bulk crystals grown by the Bridgman method. From the relation of log $J_{ph}$ vs 1/T, where $J_{ph}$ is the PC density, two dominant levels were observed, one at high temperatures and the other at low temperatures. Consequently, the trapping centers due to native defects in the $CdIn_2S_4$ film were suggested to be the causes of the decrease in the PC signal with decreasing temperature.

  • PDF

ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율 (Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures)

  • 이정관;천종훈;김나리;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

화합물 $Cu_2ZnSnS_4$ bulk 타겟을 사용하여 제조한 박막 특성에 관한 연구 (A study on the properties of thin films using a $Cu_2ZnSnS_4$ compound target)

  • 설재승;정영희;남효덕;배인호;김규호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.869-873
    • /
    • 2002
  • $Cu_2ZnSnS_4$ (CZTS) thin film is one of the candidate materials for the solar cell. It has an excellent optical absorption coefficient as well as appropriate 1.4~1.5eV band gap. The purpose of this study is replacing a half of high-cost Indium(In) atoms with low-cost Zinc(Zn) atoms and the other half with low-cost Tin(Sn) atoms in the lattice of CIS. In annealing process of thin films deposited with mixture target, the thin films were appeared the peeling. The resistivity was decreased. Thin films were deposited on ITO glass substrates using a compound target which were made by $CU_2S$, ZnS, $SnS_2$ powder were sintered in the atmosphere of Al at room temperature by rf magnetron sputtering We investigated potentialities of a low-cost material for the solar cell by measuring of thin film composition, the structure and optical properties. We could get an appropriate $Cu_2ZnSnS_4$ composition A (112) preferred orientation was appeared without annealing temperature as shown in the diffraction peaks of the CIS cells and was available for photovoltaic thin film materials. The band gap increased from 1.4 to 1.7eV as the composition ratio of Zn/Sn.. The optical absorption coefficient of the thin film was above $10^4cm^{-1}$.

  • PDF

RF Magnetron Sputtering법으로 제조한 Cu$_2$ZnSnS$_4$박막 특성에 관한 연구 (A study on the properties of Cu$_2$ZnSnS$_4$ thin films prepared by rf magnetron sputtering process)

  • 이재춘;설재승;남효덕;배인호;김규호
    • 한국표면공학회지
    • /
    • 제35권1호
    • /
    • pp.39-46
    • /
    • 2002
  • $Cu_2$$ZnSnS_4$(CZTS) thin film is one of the candidate materials for the solar cell. It has an excellent optical absorption coefficient as well as appropriate 1.4~1.5eV band gap. The purpose of this study is replacing a half of high-cost Indium(In) atoms with low-cost Zinc(Zn) atoms and the other half with low-cost Tin(Sn) atoms in the lattice of CIS. Thin films were deposited on ITO glass substrates using a compact target which were made by $Cu_2$S, ZnS, SnS$_2$ powder at room temperature by rf magnetron sputtering and were annealed in the atmosphere of Ar and $S_2$(g). We investigated potentialities of a low-cost material for the solar cell by measuring of thin film composition, the structure and optical properties. We could get an appropriate $Cu_2$$ZnSnS_4$ composition. Structure was coarsened with increasing temperature and (112), (200), (220), (312) planes appeared to conform to all the reflection Kesterite structure. A (112) preferred orientation was advanced with increasing the annealing temperature as shown in the diffraction peaks of the CIS cells and was available for photovoltaic thin film materials. The band gap increased from 1.51 to 1.8eV as the annealing temperature increased. The optical absorption coefficient of the thin film was about $10^4$$cm^{-1}$.

TiO{2-x}Nx의 저온제조 및 광화학적 특성 (Low Temperature Preparation and Photocatalytic Activity of TiO{2-x}Nx)

  • 정동운
    • 대한화학회지
    • /
    • 제54권1호
    • /
    • pp.120-124
    • /
    • 2010
  • 용액침전법에 의해 $TiO_2$$TiO_{2-x}N_x$를 제조하였다. $TiO_{2-x}N_x$ 시료는 순수한 $TiO_2$의 띠 간격인 3.20 eV (390 nm 흡광)로부터 1.77 eV (700 nm 흡광)까지 띠 간격이 줄어들게 되어 자외선 영역 뿐 아니라 가시광선 전체 영역에서도 흡광이 발생하였다. 가시광선에서의 광촉매 활성에서도 $TiO_{2-x}N_x$ 시료는 순수한 $TiO_2$ 및 P-25보다도 더 높은 활성도를 나타냈다.

스퍼터링법으로 제작한 CIGS 박막의 후열처리에 따른 물성 평가 (Characteristic of the Sputtered CIGS Films in Relation to Heat Treatment Condition)

  • 정재헌;조상현;송풍근
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.16-21
    • /
    • 2013
  • CIGS (Cu-In-Ga-Se) films were deposited on the Mo coated soda lime glass (Mo/SLG) by RF magnetron sputtering using a single sintered target with different chemical compositions. Heat treatment of the CIGS films were carried out under three different conditions, 1step ($350^{\circ}C$ for 2 hour and $550^{\circ}C$ for 2 hour) and 2step ($350^{\circ}C$ for 1 hour and $550^{\circ}C$ for 1 hour). In the case of CIGS films post-annealed on 2step method, grain size remarkably increased compared to other methods, indicating that chemical composition [Cu/(Ga+In) = 1] of CIGS films was same as CIGS target. After heat treatment by 2step method, band gap energy of the CIGS film deposited at RF 80 W showed 1.4 eV which is broadly similar to identical band gap energy (1.2 eV) of CIGS film prepared by evaporation method. Therefore, 2step heat treatment method could be expected to low temperature process.