• 제목/요약/키워드: low band gap

검색결과 305건 처리시간 0.024초

S를 고용한 CuInSe$_2$ 박막의 광학 특성 (Optical proper of S solute CuInSe$_2$ thin film)

  • 김규호;이재춘;김민호;배인호
    • 한국표면공학회지
    • /
    • 제30권2호
    • /
    • pp.136-143
    • /
    • 1997
  • The photvoltaic power system has received considerable attention as the petroleumalterative energies to the environmental problems in the wored scale. $CuLnSe_2$is one ofthe most promising materials for the fabrication of large-area modules and low cost photovoltaic devices. Sulfur solute CuInSe2 thin films were prepared by RF sputtering using powder targer which were previously compacted by powder of $Cu_2Se, \;In_2Se_3, \;Cu_2S, \;and\;In_2S_3$ in various ratios. The results induicated that the sulfur ratio, the(112) texture, and the energy band gap were increased by the increase of the S/(S+Se) that was controlled by stoichiometric compound. The energy band gap can be shifted from 1.04eV to 1.50eV by abjusting the S/(S+Se) ratio, which maich it possible to obtain perfect match to the solar spectrum.

  • PDF

대칭형 결합선로를 이용한 BPF의 설계 및 구현 (Design and Implementation of BPF Using a Symmetric Coupled Line)

  • 강상기;최홍택;이재명
    • 한국정보통신학회논문지
    • /
    • 제13권7호
    • /
    • pp.1255-1260
    • /
    • 2009
  • 마이크로스트립 인터디지털(interdigtal) 여파기는 공진기의 폭, 길이, 공진기 사이의 간격과 탭의 위치로 설계하는데, 설계파라미터의 수를 줄이는 것이 구현 측면에서 유리하다. 본 논문에서는 마이크로스트립 인터디지털 여파기의 설계파라미터 중에서 공진기의 폭을 고정시킨 것과 서로 다른 폭을 갖는 두 종류의 여파기를 국내 UWB(Ultra Wide-Band) 주파수 대역에서 설계 및 구현하였다. 여파기의 성능 측정 결과 공진기의 폭을 고정한 low-band high 여파기의 삽입손실은 1.49dB, -10dB 대역폭은 750MHz였고, 4.8GHz에서 -35.7dB의 감쇄특성을 가졌으며, S11은 -13dB 이하로 측정되었다. 공진기의 폭이 서로 다른 low-band 여파기는 삽입손실 1.6dB, -10dB 대역폭은1.63GHz로 측정되었고, S11은 -8dB 이하로 측정되었다.

Optical and dielectric properties of SrMoO4 powders prepared by the combustion synthesis method

  • Vidya, S.;John, Annamma;Solomon, Sam;Thomas, J.K.
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.191-204
    • /
    • 2012
  • In this paper, we report on the obtention of nanocrystalline $SrMoO_4$ synthesized through modified combustion process. These powders were characterized by X-ray diffraction, Fourier Transform Raman and Infrared Spectroscopy. These studies reveal that the scheelite-type $SrMoO_4$ crystallizes in tetragonal structure with I41/${\alpha}$ (N#88) space group. Transmission electron microscopy image shows that the nanocrystalline $SrMoO_4$ powders have average size of 18 nm. The optical band gap determined from the UV-V is absorption spectra for the as prepared sample is 3.7 eV. These powders showed a strong green photoluminescence emission. The samples are sintered at a relatively low temperature of $850^{\circ}C$. The morphology of the sintered pellet is studied with scanning electron microscopy. The dielectric constant and loss factor values obtained at 5 MHz for a well sintered $SrMoO_4$ pellet has been found to be 9.50 and $7.5{\times}10^{-3}$ respectively. Thus nano $SrMoO_4$ is a potential candidate for low temperature co-fired ceramics and luminescent applications.

DEPOSITION OF A-SIC:H FILMS ON AN UNHEATED SI SUBSTRATE BY LOW FREQUENCY (50Hz) PLASMA Cvd

  • Shimozuma, M.;Ibaragi, K.;Yoshion, M.;Date, H.;Yoshida, K.;Tagashira, H.
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.797-802
    • /
    • 1996
  • Hydrogenated amorphous silicon carbide (a-SiC:H) films have been deposited on unheated substrates by low frequency (50Hz) plasma using $SiH_4+CH_4+H_2$ gas mixtures. Deposition rate, refractive index, optical band gap, Vickers hardness and IR spectrum of the deposited a -SiC:H films have been measured for various rations of gas flow rates k(=$CH_4/SiH_4$, 0.5k4) with a constant $H_2$ flow rate (100sccm). As k increases, the deposition rate of the a-SiC:H films increases up to the maximum value of about 220nm/h at k=2.5, and then it decreases. The refractive index of the films was 2.6 for k=2.5, while the optical band gap of the films was 3.3eV for k=2.2. The maximum value of Vickers hardness of the films was 1500Hv at k=1. The infrared transmission measurement shows that the films contain both Si-C and Si-$CH_3$ bonds.

  • PDF

Growth and characterization of BON thin films prepared by low frequency RF plasma enhanced MOCVD method

  • Chen, G.C.;Lim, D.-C.;Lee, S.-B.;Hong, B.Y.;Kim, Y.J.;Boo, J.-H.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.510-515
    • /
    • 2001
  • It was first time that low frequency R.F. derived plasma enhanced MOCVD with frimethylborate precursor was used to fabricate a new ternary compound $BO_{x}$ $N_{y}$ . The formation of BON molecule was resulted from nitrogen nitrifying B-O, and forming the angular molecule structure proved by XPS and FT-IR results. The relationship between hardness and film thickness was studied. An thickness-independent hardness was fond about 10 GPa. The empirical calculation of band-gap and UV test result showed that our deposited $BO_{x}$ $N_{y}$ thin film was semiconductor material with 3.4eV of wide band gap. The electrical conductivity, $4.8$\times$10^{-2}$ /($\Omega$.cm)$^{-1}$ also confirmed that $BO_{x}$ $N_{y}$ has a semiconductor property. The roughness detected from the as-grown films showed that there was no serious bombarding effect due to anion in the plasma occurring in the RF frequency derived plasma.

  • PDF

이종접합 실리콘 태양전지 적용을 위한 선택적 전하접합 층으로의 전이금속산화물에 관한 연구 (A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/crystalline Silicon Heterojunction Solar Cell)

  • 김용준;김선보;김영국;조영현;박창균;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제30권3호
    • /
    • pp.192-197
    • /
    • 2017
  • Hydrogenated Amorphous Silicon (a-Si:H) is used as an emitter layer in HIT (heterojunction with Intrinsic Thin layer) solar cells. Its low band gap and low optical properties (low transmittance and high absorption) cause parasitic absorption on the front side of a solar cell that significantly reduces the solar cell blue response. To overcome this, research on CSC (carrier Selective Contacts) is being actively carried out to reduce carrier recombination and improve carrier transportation as a means to approach the theoretical efficiency of silicon solar cells. Among CSC materials, molybdenum oxide ($MoO_x$) is most commonly used for the hole transport layer (HTL) of a solar cell due to its high work function and wide band gap. This paper analyzes the electrical and optical properties of $MoO_x$ thin films for use in the HTL of HIT solar cells. The optical properties of $MoO_x$ show better performance than a-Si:H and ${\mu}c-SiO_x:H$.

실리콘-게르마늄 합금의 전자 소자 응용 (SiGe Alloys for Electronic Device Applications)

  • 이승윤
    • 한국진공학회지
    • /
    • 제20권2호
    • /
    • pp.77-85
    • /
    • 2011
  • 실리콘(Si)에 비해 상대적으로 밴드 갭이 작고, 열전도도가 낮으며, 기존의 Si 반도체 공정 기술과 호환이 가능한 실리콘-게르마늄(SiGe) 합금은 트랜지스터, 광수신 소자, 태양전지, 열전 소자 등 다양한 전자 소자에서 사용되고 있다. 본 논문에서는 SiGe 합금이 전자소자에 응용되는 원리 및 응용과 관련된 기술적인 논제들을 고찰한다. Si에 비해 밴드 갭이 작은 게르마늄(Ge)이 그 구성 원소인 SiGe 합금의 밴드 갭은 Si과 Ge의 분률과 상관없이 항상 Si의 밴드 갭 보다 작다. 이러한 SiGe의 작은 밴드 갭은 전류 이득의 손실 없이 베이스 두께를 감소시키는 것을 가능하게 하여 바이폴라 트랜지스터의 동작속도를 향상시킨다. 또한, Si이 흡수하지 못하는 장파장 대의 빛을 SiGe이 흡수하여 광전류를 생성하게 함으로써 태양전지의 변환효율을 증가시킨다. 질량이 서로 다른 Si 및 Ge 원소의 불규칙적인 분포에 의해 발생하는 포논 산란 효과 때문에 SiGe 합금은 순수한 Si 및 Ge과 비교할 때 낮은 열전도도를 갖는다. 낮은 열전도도 특성의 SiGe 합금은 전자 소자 구조 내에서의 열 손실을 억제하는데 효과가 있으므로 Si 반도체 공정 기반의 열전 소자의 구성 물질로서 활용이 기대된다.

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • 전기전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole을 기본으로 한 고분자의 합성 및 광전변환 특성 (Synthesis and Photovoltaic Properties of Low Band Gap π-Cojugated Polymer Based on 4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole)

  • 신웅;유혜리;박정배;박상준;정미선;문명준;김주현
    • 공업화학
    • /
    • 제21권2호
    • /
    • pp.137-141
    • /
    • 2010
  • 4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole과 1,4-bis(dodecyloxy)-2,5-divinylbenzene을 Heck coupling 중합법을 이용하여 poly[4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole]-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene (PPVTBT) 공중합체를 합성하였다. 합성한 PPVTBT의 최대흡수파장과 band gap은 각각 550 nm와 1.74 eV이고 HOMO와 LUMO enegry level은 각각 -5.24 eV, -3.50 eV로 나타났다. 합성한 공중합체인 PPVTBT와 (6)-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]-$C_{61}$(PCBM)을 1 : 6의 중량비로 blend하여 제작한 소자의 효율은 AM 1.5 G, 1 sun 조건($100mA/cm^{2}$)에서 0.16%의 효율을 보였다. 그리고 소자의 Jsc (short circuit current), FF (fill factor)와 Voc (open circuit voltage)는 각각 $0.74mA/cm^{2}$, 31%, 0.71 V로 나타났다.

Piezo-controlled Dielectric Phase Shifter

  • Jeong Moon-Gi;Kim Beom-Jin;Kazmirenko Victor;Poplavko Yuriy;Prokopenko Yuriy;Baik Sung-Gi
    • Journal of electromagnetic engineering and science
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2006
  • A sandwich structure of dielectric material and air gap inside a rectangular waveguide is proposed as a fast electrically tunable low-loss phase shifter. As the dielectric material is shifted up and down by piezoelectric actuator and, thereby, the thickness of air gap is changed, the effective dielectric constant of the sandwich structure is varied. Phase shifters based on the sandwich structure with different dielectric materials showed phase shift of $20{\sim}200^{\circ}/cm$ at X-band as the thickness of air gap varied up to $30{\mu}m$. The idea can be extended toward low-loss millimeter wave phase shifters since modem microwave ceramics have been developed to show very low dielectric loss$(tan\;{\delta}{\sim}10^{-4})$.