• Title/Summary/Keyword: low Reynolds number and computational fluid dynamics

Search Result 18, Processing Time 0.031 seconds

CO concentration distribution in a tunnel model closed at left end side using CFD

  • Peng, Lu;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.282-290
    • /
    • 2013
  • A primary air pollutant as an indicator of air quality released from incomplete combustion is Carbon monoxide. A study of the distributions of CO concentration with no heat source in a tunnel model closed at left end side is simulated with a commercial CFD code. The tunnel model is used to investigate the CO concentration distributions at three Reynolds numbers of 990, 1970, and 3290. which are computed by the inlet velocities of 0.3, 0.6 and 1.0 m/s. The CFD predictive approaches can be useful for a better design to analyze the distributions of CO concentrations. In the case of the tunnel model closed at left end side alone, the concentration changes of x/H=-5 and -2.5 have the similar laminar characteristics like the case of the tunnel model closed at both end sides expecially at low values of Reynolds number. Irregular average CO concentration variations at Re=1790 are considered that the transition from laminar to turbulent flow occurs even in three different tunnel models.

CFD estimation of HDCs for varying bodies of revolution of underwater gliders

  • R.V. Shashank Shankar;R. Vijayakumar
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.269-286
    • /
    • 2023
  • Autonomous Underwater Gliders (AUGs) are a type of Underwater Vehicles that move without the help of a standard propeller. Gliders use buoyancy engines to vary their weight or buoyancy and traverse with the help of the Lift and Drag forces developed from the fuselage and the wings. The Lift and Drag Coefficients, also called Hydrodynamic coefficients (HDCs) play a major role in glider dynamics. This paper examines the effect of the different types of glider fuselages based on the bodies of revolution (BOR) of NACA sections. The HDCs of the glider fuselages are numerically estimated at a low-speed regime (105 Reynolds Number) using Computational Fluid Dynamics (CFD). The methodology is validated using published literature, and the results of CFD are discussed for possible application in the estimation of glider turning motion.

CFD Simulation on Predicting POW Performance Adopting Laminar-Turbulent Transient Model (층류-난류 천이 모델을 적용한 프로펠러 단독 성능 해석에 관한 CFD 시뮬레이션)

  • Kim, Dong-Hyun;Jeon, Gyu-Mok;Park, Jong-Chun;Shin, Myung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In the present study, the model-scale Propeller Open Water (POW) tests for the propeller of 176K bulk carrier and 8600TEU container ship were conducted through Computational Fluid Dynamics (CFD) simulation. In order to solve the incompressible viscous flow field, the Reynolds-averaged Navier-Stokes (RaNS) equations were employed as the governing equations. The γ-Reθ(gamma-Re-theta) transition model combined with the SST k-ωturbulence model was introduced to describe the laminar-turbulence transition considering the low Reynolds number of model-scale. Firstly, the flow simulation developing over a flat plate was performed to verify the transition modeling, in which the wall shear stresses were compared with experiments and other numerical results. Then, to investigate the effect of the model, the CFD simulation for the POW test was performed and the simulated propeller performance was validated through comparison with the experiment conducted at Korea Research Institute of Ships & Ocean Engineering (KRISO).

Belly Sting Model Support Interference Effect of NASA Common Research Model at Low Speed Wind Tunnel (저속 풍동시험 시 NASA Common Research Model의 Belly Sting 모형 지지부에 의한 간섭효과에 관한 연구)

  • Cha, Kyunghwan;Kim, Namgyun;Ko, Sungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Computational Fluid Dynamics (CFD) was performed under low-speed wind tunnel test conditions using a 29.7% scale model of the NASA common research model. A wind tunnel test was conducted to measure the aerodynamic coefficient of the CRM with Belly sting model support configuration at a low Reynolds number of 0.3×106 and it was compared with the aerodynamic coefficient of CFD analysis. In order to verify the validation of the analysis, a computational analysis under the conditions of the advance research was performed and compared. The interference effect of the Belly sting model support affected not only the fuselage but also the main and tail wings.

Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining (입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구)

  • Kyoungjin Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF

Application of A Local Preconditioning Method for 3-D Compressible Low Mach Number Flows (3차원 저속 압축성 유동 해석을 위한 국소 예조건화 기법 적용 연구)

  • Yoo, Il-Yong;Jin, Min-Suk;Kwak, Ein-Keun;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.939-946
    • /
    • 2008
  • Euler codes or Navier-Stokes codes for compressible flows suffer severe degradation in convergence as Mach number approaches zero. The convergence problem arose from the wide disparity in characteristic speeds can be solved using preconditioning methods without large modifications. In this paper, a preconditioned RANS(Reynolds Averaged Navier-Stokes) solver is developed for analysis of low Mach number flows. In order to validate the method, computational examples are chosen and the results are compared with the experimental data and the existing computed results showing a good accuracy and convergence characteristics for steady inviscid, laminar and turbulent flows at low Mach number.

Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models (난류 모형에 따른 수직 평판 위 파동 액막류의 수치해석 연구)

  • Min, June Kee;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.373-380
    • /
    • 2014
  • Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.

An empirical model of air bubble size for the application to air masker (에어마스커의 기포크기 추정 경험적 모델)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Park, Youngha;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.320-329
    • /
    • 2021
  • In this paper, an empirical model of air bubble size to be applied to an air masker for reduction of underwater radiation noise is presented. The proposed model improves the divergence problem under the low-speed flow condition of the existing model derived using Rayleigh's jet instability model and simple continuity condition by introducing a jet flow velocity of air. The jet flow velocity of air is estimated using the bubble size where the liquid is quiescent. In a medium without flow, the size of the bubble is estimated by an empirical method where bubble formation regime is divided into a laminar-flow range, a transition range, and a turbulent-flow range based on the Reynolds number of the injected air. The proposed bubble size model is confirmed to be in good agreement with the Computational Fluid Dynamics (CFD) analysis result and the experimental results of the existing literature. Using the acoustic inversion method, the air bubble population is estimated from the insertion loss measured during the air injection experiment of the air- masker model in a large cavitation tunnel. The results of the experiments and the bubble size model are compared in the paper.