DOI QR코드

DOI QR Code

CFD estimation of HDCs for varying bodies of revolution of underwater gliders

  • R.V. Shashank Shankar (Department of Ocean Engineering, IIT Madras) ;
  • R. Vijayakumar (Department of Ocean Engineering, IIT Madras)
  • 투고 : 2022.01.26
  • 심사 : 2023.08.22
  • 발행 : 2023.09.25

초록

Autonomous Underwater Gliders (AUGs) are a type of Underwater Vehicles that move without the help of a standard propeller. Gliders use buoyancy engines to vary their weight or buoyancy and traverse with the help of the Lift and Drag forces developed from the fuselage and the wings. The Lift and Drag Coefficients, also called Hydrodynamic coefficients (HDCs) play a major role in glider dynamics. This paper examines the effect of the different types of glider fuselages based on the bodies of revolution (BOR) of NACA sections. The HDCs of the glider fuselages are numerically estimated at a low-speed regime (105 Reynolds Number) using Computational Fluid Dynamics (CFD). The methodology is validated using published literature, and the results of CFD are discussed for possible application in the estimation of glider turning motion.

키워드

참고문헌

  1. Arima, M., Ichihashi, N. and Ikebuchi, T. (2008), "Motion characteristics of an underwater glider with independently controllable main wings", OCEANS'08 MTS/IEEE Kobe-Techno-Ocean'08 - Voyage toward the Future, OTO'08, 156-161. https://doi.org/10.1109/OCEANSKOBE.2008.4531062.
  2. Guggilla, M. and Rajagopalan, V. (2019), "Autonomous underwater gliders - A brief review of development and design and a proposed model for virtual mooring", Proceedings of the International Conference on Coastal and Inland Water Systems 2019.
  3. Guggilla, M. and Rajagopalan, V. (2020), "CFD investigation on the hydrodynamic characteristics of blended wing unmanned underwater gliders with emphasis on the control surfaces", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 6B-2020. https://doi.org/10.1115/omae2020-19280.
  4. Guggilla, M. and Rajagopalan, V. (2018), "Study on the Hydrodynamic performance of unmanned underwater glider with varying wing section using CFD", MARHY 2018, 1-8. http://www.doe.iitm.ac.in/vijay2028/publications.
  5. Guggilla, M. and Vijayakumar, R. (2019a), "CFD study of the hydrodynamic characteristics of blended winged unmanned underwater gliders", Proceedings of the International Offshore and Polar Engineering Conference.
  6. Guggilla, M. and Vijayakumar, R. (2019b), "CFD Study of the Hydrodynamic Characteristics of Blended Winged Unmanned Underwater Gliders", Proceedings of the 29th (2019) International Ocean and Polar Engineering Conference, 1547-1552. http://www.isope.org/wp-content/uploads/2019/06/Pap-2019-Honolulu-Web-3-0430-MK-jc-test2-space85-use-1touch-0610.pdf.
  7. Harry Jackson, C.A. (1992), "Fundamentals of submarine concept design", SNAME Transactions, 100, 419-448.
  8. Heaslet, M.A. and Nitzberg, G.E. (1947), "The calculation of drag for airfoil sections and bodies of revolution at subcritical speeds", In NACA Research Memorandum: Vol. RM No. A7B.
  9. Hockley, C.J. (2018), Improving Seaglider Efficiency : an Analysis of Wing Shapes, Hull Morphologies , and Propulsion Methods (Issue July), Embry-Riddle Aeronautical University.
  10. Hoerner, S.F. (1965), "Fluid-dynamic drag", In Hoerner Fluid Dynamics (1965th ed.). https://ci.nii.ac.jp/naid/20000254063.
  11. ITTC - Recommended Procedures and Guidelines. (2011), "Practical guidelines for ship CFD", Proceedings of the 26th International Towing Tank Conference.
  12. Jagadeesh, P., Murali, K. and Idichandy, V.G. (2016), "Experimental investigation of hydrodynamic force coefficients over AUV hull form", Ocean Eng., 2(1), 90-119. https://doi.org/10.1016/j.joes.2017.03.003.
  13. Joubert, P.N., Hoffmann, P.H. and Sinclair, T.J. (1978), "Further study of bodies of revolution", J. Ship Res., 22(1), 54-63. https://doi.org/10.5957/jsr.1978.22.1.54.
  14. Krasnov, N.F. (1971). "Aerodynamics of bodies of revolution", J. Fluid Mech., 50(2). https://doi.org/10.1017/S0022112071222643.
  15. Li, J., Wang, P., Dong, H., Wu, X., Chen, X.. and Chen, C. (2020), "Shape optimisation of blended-wing-body underwater gliders based on free-form deformation", Ships Offshore Struct., 15(3), 227-235. https://doi.org/10.1080/17445302.2019.1611989.
  16. Li, X., Zhao, M., Zhao, F., Yuan, Q. and Ge, T. (2014), "Study on hydrodynamic performance of Heavier-than-water AUV with overlapping grid method", Ocean Syst. Eng., 4(1), 1-19. https://doi.org/10.12989/ose.2014.4.1.001.
  17. Lidtke, A.K., Turnock, S.R. and Downes, J. (2018), "Hydrodynamic design of underwater gliders using k-kL-ω reynolds averaged navier-stokes transition model", IEEE J. Oceanic Eng., 43(2), 356-368. https://doi.org/10.1109/JOE.2017.2733778.
  18. Lidtke, A.K., Turnock, S.R. and Downes, J. (2016), "Assessment of underwater glider performance through viscous computational fluid dynamics", Autonomous Underwater Vehicles 2016, AUV 2016, 364-373. https://doi.org/10.1109/AUV.2016.7778698.
  19. Mises, R. Von. (1945), Theory of flight (First), McGraw-Hill Book Company.
  20. Muhammad Yasar, J., Mark, O., Nagarajan, T., Ali, S.S.A. and Barkat, U. (2015), "Study on wing aspect ratio on the performance of a gliding robotic fish", Appl. Mech. Mater., 786, 248-253. https://doi.org/10.4028/www.scientific.net/amm.786.248.
  21. Ray, A., Singh, S.N. and Seshadri, V. (2011), "Underwater gliders - Force multipliers for naval roles", RINA, Royal Institution of Naval Architects - Warship 2011: Naval Submarines and UUVS, Papers, 29-41.
  22. Rayaprolu, V.S.S. and Vijayakumar, R. (2021), "Sensitivity analysis of the turning motion of an underwater glider on the viscous hydrodynamic coefficients", Defence Sci. J., 71(5), 709-717. https://doi.org/10.14429/dsj.71.16905.
  23. Saunders, A. and Nahon, M. (2002), "The effect of forward vehicle velocity on through-body AUV tunnel thruster performance", Oceans Conference Record (IEEE), 1(4), 250-259. https://doi.org/10.1109/oceans.2002.1193280.
  24. Shankar, R.V.S. and Vijayakumar, R. (2020). "Numerical study of the effect of wing position on autonomous underwater glider", Defence Sci. J., 70(2), 214-220. https://doi.org/10.14429/dsj.70.14742
  25. Shashank Shankar, R.V. and Vijayakumar, R. (2019). "Effect of rudder and roll control mechanism on path prediction of autonomous underwater gliders", Lecture Notes in Civil Engineering, 22, 491-506. https://doi.org/10.1007/978-981-13-3119-0_29.
  26. Shashank, R.V. and Vijayakumar, R. (2019), "Maneuverability and dynamics of autonomous underwater gliders : Study and review of the spiral path maneuver", Trans. R Inst. Nav. Archit. Part B-Int. J. Small Cr., 161(2), 1-15.
  27. Singh, Y., Bhattacharyya, S.K. and Idichandy, V.G. (2017), "CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results", J. Ocean Eng. Sci., 2(2), 90-119. https://doi.org/10.1016/j.joes.2017.03.003.
  28. Stevenson, P., Furlong, M. and Dormer, D. (2007), "AUV shapes - Combining the practical and hydrodynamic considerations", OCEANS 2007 - Europe, 070312, 1-6. https://doi.org/10.1109/oceanse.2007.4302483.
  29. Stryczniewicz, K., Stryczniewicz, W. and Szczepaniak, R. (2019), "Modelling hydrodynamic characteristics of the underwater glider based on computational fluid dynamics", IOP Conf. Series: Mater. Sci. Eng., 710, 012012. https://doi.org/10.1088/1757-899X/710/1/012012.
  30. Sun, S., Song, B., Wang, P., Dong, H. and Chen, X. (2021), "A new simplified numerical approach for shape design of underwater wings", Ships Offshore Struct., 17(8), 1-11. https://doi.org/10.1080/17445302.2021.1937804.
  31. Ting, M.C., Abdul Mujeebu, M., Abdullah, M.Z. and Arshad, M.R. (2012), "Numerical study on hydrodynamic performance of shallow underwater glider platform", Indian J. Marine Sci., 41(2), 124-133.
  32. Wang, Y., Zhang, Y., Zhang, M.M., Yang, Z. and Wu, Z. (2017), "Design and flight performance of hybrid underwater glider with controllable wings", Int. J. Adv. Robot. Syst., 14(3). https://doi.org/10.1177/1729881417703566.
  33. Zhang, F., Zhang, F. and Tan, X. (2014), "Tail-enabled spiraling maneuver for gliding robotic fish", J. Dyn. Syst. Measurement Control T. ASME, 136(4), 041028. https://doi.org/10.1115/1.4026965.
  34. Zhang, S., Yu, J., Zhang, A.. and Zhang, F. (2013), "Spiraling motion of underwater gliders: Modeling, analysis, and experimental results", Ocean Eng., 60, 1-13. https://doi.org/10.1016/j.oceaneng.2012.12.023.