• Title/Summary/Keyword: lossless compression

Search Result 196, Processing Time 0.029 seconds

Lossless Compression for Hyperspectral Images based on Adaptive Band Selection and Adaptive Predictor Selection

  • Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3295-3311
    • /
    • 2020
  • With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Adaptive Rank-reindexing Scheme for Index Image Lossless Compression (인덱스 영상에서의 무손실 압축을 위한 적응적 랭크-리인덱싱 기법)

  • Park, Jung-Man;You, Kang-Soo;Jang, Euee-S.;Kwak, Hoon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.164-166
    • /
    • 2005
  • In this paper, using ranks of co-occurrence frequency about indices in neighboring pixels, we introduce a new re-indexing scheme for efficiency of index color image lossless compression. The proposed method is suitable for arithmetic coding because it has skewed distributions of small variance. Experimental results proved that the proposed method reduces the bit rates than other coding schemes, more specifically 15%, 54% and 12% for LZW algorithm of GIF, the plain arithmetic coding method and Zeng's scheme.

  • PDF

A new method of lossless medical image compression (새로운 무손실 의료영상 압축방법)

  • 지창우;박성한
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2750-2767
    • /
    • 1996
  • In this papr, a new lossless compression method is presented based on the Binary Adaptive Arithmetic Coder(BAAC). A simple unbalanced binary tree is created by recursively dividing the BAAC unit interval into two probability sub-inervals. On the tree the More Probable Predicted Value(MPPV) and Less Probable Predicated Value(LPPV) estimated by local statistics of the image pixels are arranged in decreasing order. The BAAC or Huffman coder is thus applied to the branches of the tree. The proposed method allows the coder be directly applied to the full bit-plane medical image without a decomposition of the full bit-planes into a series of binary bit-planes. The use of the full bit model template improves the compresion ratio. In addition, a fast computation for adjusting the interval is possible since a simple arithmetic operation based on probability interval estimation state machine is used for interval sub-division within the BAAC unit interval.

  • PDF

A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

  • Rudder, Andrew;Kieu, The Duc
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2984-3004
    • /
    • 2015
  • Designing a new reversible data hiding technique with a high embedding rate and a low compression rate for vector quantization (VQ) compressed images is encouraged. This paper proposes a novel lossless data hiding scheme for VQ-compressed images based on the joint neighboring coding technique. The proposed method uses the difference values between a current VQ index and its left and upper neighboring VQ indexes to embed n secret bits into one VQ index, where n = 1, 2, 3, or 4. The experimental results show that the proposed scheme achieves the embedding rates of 1, 2, 3, and 4 bits per index (bpi) with the corresponding average compression rates of 0.420, 0.483, 0.545, and 0.608 bit per pixel (bpp) for a 256 sized codebook. These results confirm that our scheme performs better than other selected reversible data hiding schemes.

Development of the Lossless Biological Signal Compression Program for High-quality Multimedia based Real-Time Emergency Telemedicine Service (고품질 멀티미디어 기반 응급 원격 진료서비스를 위한 생체신호 무손실 압축, 복원 프로그램 개발)

  • Lim, Young-Ho;Kim, Jung-Sang;Yoon, Tae-Sung;Yoo, Sun-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2727-2729
    • /
    • 2002
  • In an emergency telemedicine system such as High-quality Multimedia based Real-time Emergency Telemedicine(HMRET) service, it is very important to examine the status of the patient continuously using the multimedia data including the biological signals(ECG, BP, Respiration, $SpO_2$) of the patient. In order to transmit these data real time through the communication means which have the limited transmission capacity. It is also necessary to compress the biological data besides other multimedia data. For the HMRET service, we developed the lossless biological signal compression program in MSVC++ 6.0 using DPCM method and JPEG Huffman table, and tested in an internet environment.

  • PDF

영상압축 : Digital Image Compression

  • Kim, Gyeong-Seop
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.4 no.1
    • /
    • pp.166-180
    • /
    • 1998
  • $\cdot$ 영상 압축은 영상의 통계학적 분포, 반복성을 이용하여 빈도가 높은 데이터는 적은 수의 bits를, 빈도가 낮은 데이터에는 보다 많은 수의 bits를 할당하여 전체 영상을 나타내는 bits 수를 줄이는 것임. $\cdot$ 영상 압축은 크게 Lossy Coding, Lossless Coding으로 나뉘며, Lossy coding은 DCT, 양자화기, VLC Codes를 쓰며 압축 율은 높으나 원래의 영상을 정확히 복원하지 못함. $\cdot$ 영상 압축에 대한 국제 규격 협회는 JPEG, MPEG I, MPEG II, MPEG IV, H.261, H.263 등이 있으나 본 seminar에서는 JPEG 규격만 논함. $\cdot$ 의학 영상은 Resolution이 크고 study 단위로 관리되기 때문에 영상 데이터량이 많으나 진단의 목적으로 쓰이기 때문에 주로 lossless 압축을 쓰게 되나 압축율이 낮음.(3:1 이하). 최근에는 Fractal, Wavelet Coding을 통한 압축율을 증가 시키는 Image Compression Algorithms이 활용됨. $\cdot$ MPEG은 동영상의 압축 표준안이며, 동영상은 한frame 당 25개 이상의 정지 화상으로 이루어지기 때문에 JPEG 규격에서 사용되었던 기법이 그대로 활용되며 영상과 영상간, 또는 frame과 frame 간의 여상의 변화, 움직임을 Vector로 coding하는 interframe Coding 기법을 활용하나 설명하기에는 광범위한 topic이므로 본 seminar에서는 생략함.

  • PDF

CR-DPCM for Lossless Intra Prediction Method in HEVC (CR-DPCM을 이용한 HEVC 무손실 인트라 예측 방법)

  • Hong, Sung-Wook;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.307-315
    • /
    • 2014
  • A new modified lossless intra-coding method based on a cross residual transform is applied to HEVC(High Efficiency Video Coding). The HEVC standard including a multi-directional spatial prediction method to reduce spatial redundancy encodes the pixels in a PU (Prediction Unit) by using neighboring pixels. In the new modified lossless intra-coding method, the spatial prediction is performed by pixel-based DPCM but is implemented by block-based manner by using cross residual transform on the HEVC standard. The experimental results show that the new lossless intra-coding method reduces the bit rate of approximately 8.4% in comparison with the lossless-intra coding method in the HEVC standard and the proposed method results in slightly better compression ratio than the JPEG2000 lossless coding.

A Resolution-Scalable Data Compression Method of a Digital Hologram (디지털 홀로그램의 해상도-스케일러블 데이터 압축 방법)

  • Kim, Yoonjoo;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.174-183
    • /
    • 2014
  • This paper is to propose a scalable video coding scheme for adaptive digital hologram video service for various reconstruction environments. It uses both the light source information and digital hologram at both the sending side and the receiving side. It is a resolution-scalable coding method that scales the resolution, that is, the size of the reconstructed image. The method compresses the residual data for both the digital hologram and the light source information. For the digital hologram, a lossy compression method is used, while for the light source information, a lossless compression method is used. The experimental results showed that the proposed method is superior to the existing method in the image quality at the same compression ratio. Especially it showed better performance than the existing method as the compression ratio becomes higher.