• 제목/요약/키워드: loss system

검색결과 7,482건 처리시간 0.032초

HTS 케이블 냉각용 역브레이튼 사이클 극저온 냉동기 설계에 관한 연구 (Design of Reverse Brayton Cycle Cryocooler System for HTS Cable Cooling)

  • 박재홍;권용하;김영수;박성출
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.58-65
    • /
    • 2003
  • The high temperature superconductivity(HTS) cable must be cooled below the nitrogen liquefaction temperature to applicate the cable in power generation and transmi-ssion system under the superconducting state. To obtain superconducting state. a reliable cryocooler system is required. Structural and thermal design have been performed to design cryocooler system operated with reverse Brayton cycle using gas neon as refrigerant. This cryocooler system consists of compressor. recuperator. coldbox. control valves and has 1 kW cooling capacity. Heat loss calculation was conducted for the given cryocooler system by considering the conduction and radiation through the multi-layer insulation(MLI) and high vacuum. The results can be summarized as: conduction heat loss is 7 W in valves and access port and radiation heat loss is 18 W through the surface of cryocooler. The full design specifications were discussed and the results were applied to construct in house HTS cable cooling system.

원자력 발전 원자로 용기의 열손실 설계인자에 관한 연구 (Parametric Study on the Heat Loss of the Reactor Vessel in the Nuclear Power Plant)

  • Jong-Ho Park;Seoug-Beom Kim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.827-836
    • /
    • 2004
  • The design parameter of the heat loss for the pressurized water reactor has been studied. The heat loss from the reactor vessel through the air gap. insulation are analysed by using the computational fluid dynamics code, FLUENT. Parametric study has been performed on the air gap width between the reactor vessel wall and the inner surface of the insulation, and on the insulation thickness. Also evaluated is the performance degradation due to the chimney effect due to gaps left between the panels during the installation of the insulation system. From the analysis results, the optimal with of air gap and insulation thickness and the value of heat loss are obtained The results show how the heat loss varies with the air gap width and insulation thickness. The temperature and the velocity distributions are also presented. From the results of the evaluation. the optimal air gap width and the optimal insulation thickness are obtained. As the difference between the predicted heat loss and measured heat loss from the reactor vessel is construed Primarily as losses due to chimney effect. the contribution of the chimney effect to the total heat loss is quantitatively indicated.

배관 해석 프로그램을 통한 해수담수화 플랜트 수압 시스템 분석 (Analysis of hydraulic system for seawater desalination plant through piping analysis program)

  • 최지혁;최용준;양흥식;이상호;최준석
    • 상하수도학회지
    • /
    • 제34권3호
    • /
    • pp.221-230
    • /
    • 2020
  • In actual seawater desalination plant, the pressure loss due to frictional force of pipe is about 3~5 bar. Also, the pressure loss at pipe connection about 1~3 bar. Therefore, the total pressure loss in the pipe is expected to be about 4~8 bar, which translates into 0.111 to 0.222 kWh/㎥ of energy when converted into the Specific Energy Consumption(SEC). Reducing energy consumption is the most important factor in ensuring the economics of seawater desalination processes, but pressure loss in piping is often not considered in plant design. It is difficult to prevent pressure loss due to friction inside the pipe, but pressure loss at the pipe connection can be reduced by proper pipe design. In this study, seawater desalination plant piping analysis was performed using a commercial network program. The pressure loss and SEC for each case were calculated and compared by seawater desalination plant size.

원유펌프시스템의 열전달해석 및 냉각설계 (Heat Transfer Analysis and Cooling Design for Crude Oil Pump System)

  • 김완기;이준엽;권중록;김해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2017-2022
    • /
    • 2008
  • The crude oil pump system is the equipment for transporting crude oil and it consists of 3 major components, a motor and an impeller which discharge underground crude oil, a pipestack that transmits the cooling oil and power, and a cooling oil unit & junction box that provides cooling oil and electric power. When considering the system characteristics that it has to be installed at a depth of deeper than 100 m, a design technology for the efficient control of the heat occurring at a conductor and motor is necessary and it is the essential factor for ensuring system durability. In this paper, therefore, cooling oil flow has been calculated to satisfy the limit value of the system temperature by analyzing heat flow considering the related losses such as loss of conductor, contact resistor loss at the conductor connection, and operation loss of motor. And the operation temperature has been set up based on the temperature of crude oil and the heat of motor and conductor. Also, a design for cooling of crude oil pump system has been proposed by calculating the operation pressure loss and selecting the capacity of a cooling oil pump and a heat exchanger.

  • PDF

공동주택 이중관 공법의 현안 분석 및 개선 연구 (A Study on the Status and Improvement of Double Pipe System in Apartment Buildings)

  • 김명석;김영일;정광섭
    • 설비공학논문집
    • /
    • 제25권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Double pipe system in which PB pipe is inserted in CD pipe buried in the concrete slab is widely used for cold and hot water supplies in apartment housings. The system, however becomes complicated and the overlaying pipes in the concrete slab weaken the compressive strength of the slab. Also, insufficient insulation increases energy loss. In this work, the problems of the double pipe system are studied and plans A, B, and C are suggested for improvement. In terms of compressive strength of the concrete slab, plan A(total pipe length 73 m) was the weakest and plan B(2 m) was the strongest. Energy loss of plan A was the largest with 558.9 W and plan B was the lowest with 220.7 W. However, considering the combined effect of strength and heat loss, plan C becomes the best choice, which retains the advantage of the double pipe system.

저손실 자기부상 시스템 개발 (Development of Low Loss Magnetic Levitation System)

  • 김종문;강도현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.592-600
    • /
    • 2005
  • In this paper, a low loss magnetic levitation(Maglev) system is suggested and tested. The suggested Maglev system includes four hybrid magnets which consist of permanent magnet and coil. In the steady state, the levitated module system can be supported by attraction force generated by permanent magnet. The coil current controls only dynamic loads due to external disturbances. The module systems are designed by using finite element method(FEM) software tools such as MAXWELL and ANSYS. Also, digital control systems are designed to keep the magnet airgap at a constant value. The control systems include a VME(versa module europa)-based CPU(central processing unit) board, AD(analog to digital) board, PWM(pulse width modulation) board, 4-quadrant chopper, and sensors. In order to estimate the vertical velocity of the magnet, we use second order state observer with acceleration and gap signals as input and output signals, respectively. The characteristics of the suggested low loss Maglev system are demonstrated by experimental results showing coil current of 0A in the steady state of 3m airgap and performance specifications are satisfied for reference gap and force disturbance.

부하패턴을 이용한 손실계수 산정 방법 (The Method of Calculating the Distribution Loss Factor using the Load Current Pattern)

  • 최성훈;김준일;박용업
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.40-45
    • /
    • 2010
  • In order to establish the electric distribution system economically and operate efficiently, it becomes important to calculate energy losses of the system more accurately. This importance is not only related for the engineering of utilities' power network but also for the consumers' electric system. The Distribution Loss Factor (DLF) is the fundamental element of calculating the energy losses occurred through the electric system including the electric lines and equipments. Up to now, the DLF is calculated by empirical formulas using the correlation between the DLF itself and Load Factor. However, these methods have some limitations to reflect the various characteristics of the system and the load. In this regard, the novel method proposed here is developed to yield more accurate result of DLF which actively interacting with the characteristics and load patterns of the system. The improvement of accuracy is very significant according to the results of verification presented at the end of this paper.

초기 운전점 선정을 통한 배전계통 최적 재구성에 관한 연구 (A study of Optimal Reconfiguration in Distribution Power System using Initial Operating Point)

  • 서규석;김정년;백영식
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.451-456
    • /
    • 2007
  • This paper presents a problem that reconfigure distribution power system using branch exchange method. Optimal reconfiguration problem calculates line loss, voltage condition about system states of all situations that become different according to line On/off status, and search for optimum composition of these. However, result is difficult to be calculated fast. Because radiated operation condition of system is satisfied using many connection and sectionalize switches in the distribution power system. Therefore, in this paper, optimization method for reducing system total loss and satisfying operating condition of radial and constraints condition of voltage is proposed using the fastest branch exchange. And optimal solution at branch exchange algorithm can be wrong estimated to local optimal solution according to initial operating state. Considering this particular, an initial operating point algorithm is added and this paper showed that optimal solution arrives at global optimal solution.

Investigating Exoplanet Orbital Evolution Around Binary Star Systems with Mass Loss

  • Rahoma, Walid A.
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.257-264
    • /
    • 2016
  • A planet revolving around binary star system is a familiar system. Studies of these systems are important because they provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long time. As a conclusion, the behavior of the planet orbital elements is quite affected by the rate of the mass loss from the accompanying binary star.

Damping Properties and Transmlission Loss of Polyurethane. II. PU Layer and Copolymer Effect

  • Yoon, kwan-Han;Kim, Ji-Gon;Bang, Dae-Suk
    • Fibers and Polymers
    • /
    • 제4권2호
    • /
    • pp.49-53
    • /
    • 2003
  • Polyurethane (PU) layer and copolymer consisted of the different molecular weights (1000 and 2000 g/mol) of poly(propylene glycol) (PPG) were prepared. The damping and mechanical properties of these materials were compared with PU 1000 made by PPG having the molecular weight of 1000 g/mol. The optimum composition of PU2000 used for PU layer and copolymer was diphenylmethane diioscynate (MDI)/propylene glycol (PPG)/butanediol (BD) (1/0.3/0.7) based on the damping and mechanical properties. The damping peak of PU copolymer was higher than those of PU layer and PUI 1000 in low temperature range (-30- $10^{\circ}C$). For application in noise reduction, the transmission loss of the mechanical vibration through solid structure was measured. PU layer and copolymer were used as a damping layer. The transmission loss of PU copolymer was more effective than those of PU layer and PU 1000 in the experimental frequency range.