• Title/Summary/Keyword: loss ratio

Search Result 3,126, Processing Time 0.032 seconds

Estimating the Loss Ratio of Solar Photovoltaic Electricity Generation through Stochastic Analysis

  • Hong, Taehoon;Koo, Choongwan;Lee, Minhyun
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.3
    • /
    • pp.23-34
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

ESTIMATING THE LOSS RATIO OF SOLAR PHOTOVOLTAIC ELECTRICITY GENERATION THROUGH STOCHASTIC ANALYSIS

  • Taehoon Hong;Choongwan Koo;Minhyun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.375-385
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

  • PDF

Analysis of Heat Quantity in CNG Direct Injection Bomb(2) : Inhomogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(2) : 비균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-31
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyzer the heat quantity of inhomogeneous charge methane-air mixture. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. It is shown that the effect of stratification is not significant in case of the overall excess air ratio of 1.1, mainly due to the higher heat loss and lower thermal efficiency compared to those of homogeneous condition. In the case of the overall excess air ratio of 1.4, as the initial charge pressure decreases, the CHR ratio has been decreased while the HL ratio has been increased, Generally, as the initial charge pressure increases, the amount of injection mixture has been decreased and has resulted in lower mean velocity and turbulence intensity for injection mixture. Also, the injected mixture is too rich to result in mixing deficiency in combustion chamber. From these results, it could be possible to acquire the improvement of thermal efficiency and the reduction of heat loss simultaneously through the 2-stage injection in CNG direct injection engine.

A Experimental Study on Behavioral Characteristics and Loss Ratio of Sediment for Reclaimed Revetment (매립호안의 유사 거동특성과 유실률에 관한 실험연구)

  • Kim, Dong Hyun;Cho, Jae Nam;Kim, Kyu-Sun;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.627-635
    • /
    • 2016
  • Recently, several construction projects have been built to create residential area, industrial complex and agricultural land on reclaimed on- and offshore regions. Estimating the quantity of filling materials during reclamation is the most curcial factor of the total construction cost of reclamation project. However, the estimation of loss ratio, defined as the ratio of loss amount to overall dumped amount, mostly depends on the empirical methods and formulae based on the material characteristics due to the lack of sufficient literature about the loss ratio according to hydraulic conditions. In this studies the loss ratio of materials considering flow conditions and material characteristics were examined through hydraulic experiments. A series of hydraulic experiments was conducted using five different hydraulic conditions and two types of materials such as sand and anthracite in a horizontal rectangular flume ($13.0m{\times}5.0m{\times}0.10m$), in which a round type revetment was installed. It is found that the loss ratio generally tends to increase with increasing the particle Froude number regardless of the types of materials. Also, when the flow velocity(u) becomes higher than the critical flow velocity ($u_c$), the loss ratios of sand and anthracite are dramtically increased up to 7.4% and 24.4%, respectively. As a future work, more specific mean velocities will be considered to figure out the loss ratio and more accurate estimation of amount of filling materials will be possible to present with confidence.

A Study on the Determination of Loss Ratio in Dredged Soils (준설토의 유실율 결정에 관한 연구)

  • 김석열;김승욱;노종구
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.606-611
    • /
    • 1999
  • Recently , the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materialss. The method of hydraulic fill i recalmation is executed by transporting the mixture of water -soil particles into a relcaimed land through dredging pipes, then the dredged soil particels settle down in thewater orflow over an out flow weir with the water. The amount of the volume reductions of dredged soil is considered the sum of the overall settlement by descication shrinkage and self-weigth consolidation and the loss of soil particles flow over a weir. In the present study, hydrometer analysis was performed with the soil samples obtained bofore and after dredging to estimate the amount of soil particles residual at reclaimed area and the loss of soil particles , then it was suggested the method of determining the loss ratio of dredged soils from the tests results. The hydrometer analysis of in-situ soil samples showed that the loss ratio of dredged soils is lowest at the nearest point to dredge pipe and highest at the nearest point of out flow weir.

  • PDF

Low Loss Power Dividing Switch for Indoor Microwave Power Distribution (마이크로파 실내 배전용 저반사형 전력 분배 스위치)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.90-94
    • /
    • 2013
  • A low loss power dividing switch in a indoor microwave power distribution system is proposed and designed with a various power dividing ratio. Switching characteristics are analyzed by use of the S-parameter of the switch. Newly proposed switch showed a very low return loss less than -30dB at the operating frequency of 2.45GHz. Three kinds of the switch in which we take out individually 1/2, 1/3 and 1/4 of the input power were fabricated, and measured the delivered, transmitted, and return loss power ratio. Simulated results showed that the lower power ratio is, the better accurate operating performance shows. This switch can switch the input power from 4.5% to 58% with the variance of 5% output power. The experimental results are in good agreement with the simulation within the return loss of 1%.

Development of Loss Model Based on Quantitative Risk Analysis of Infrastructure Construction Project: Focusing on Bridge Construction Project (인프라건설 프로젝트 리스크 분석에 따른 손실 정량화 모델 개발 연구: 교량프로젝트를 중심으로)

  • Oh, Gyu-Ho;Ahn, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.208-209
    • /
    • 2022
  • This study aims to analyze the risk factors caused by object damage and third-party damage loss in actual bridge construction based on past insurance premium payment data from major domestic insurers for bridge construction projects, and develop a quantitative loss prediction model. For the development of quantitative bridge construction loss model, the dependent variable was selected as the loss ratio, and the independent variable adopted 1) Technical factors: superstructure type, foundation type, construction method, and bridge length 2) Natural hazards: flood anf Typhoon, 3) Project information: total construction duration, total cost and ranking. Among the selected independent variables, superstructure type, construction method, and project period were shown to affect the ratio of bridge construction losses, while superstructure, foundation, flood and ranking were shown to affect the ratio of the third-party losses.

  • PDF

Effects of Length-to-Diameter Ratio on the Three-Dimensional Flow Within an Injection Hole Normally Oriented to the Mainflow (분사구멍의 길이가 수직 분사구멍 내부에서의 3차원 유동에 미치는 영향)

  • Lee, Sang Woo;Joo, Seong Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1255-1266
    • /
    • 1998
  • Effects of a length-to-diameter ratio, L/D, on the three-dimensional flow and aerodynamic loss within an injection hole, which is normally oriented to the mainflow, have been investigated by using a straight five-hole probe. The length-to-diameter ratio of the injection hole is varied to be 0.5 and 2.0 for blowing ratios of 0.5, 1.0 and 2.0. Regardless of the blowing ratio, flows within the hole and at the jet exit are strongly affected by the length-to-diameter ratio. In the case of L/D=0.5, the inside flow is considerably influenced by the mainflow, and the exit flow variation is found to be the greatest. The aerodynamic loss in this case is usually attributed to jet -mainflow interactions. In the case of L/D=2.0, the flow separation and reattachment in the inlet region are completely separated from the complicated exit flow, and the aerodynamic-loss production is mainly due to the inlet flow separation.

A Study on Rheology Characteristics of Ag Paste for Screen Printing Method for Silicon Solar Cells Electrodes Capable of Forming High Aspect Ratio (고온 소결형 실리콘 태양 전지의 High Aspect Ratio 전극 형성이 가능한 Ag 페이스트의 레오로지 특성 연구)

  • Oh, Tae-Hun;Kim, Sung-Bin;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • Photovoltaic solar cells are all in the incident because they are not converted into electrical energy, high-efficiency solar cells in order to reduce the loss of elements must be. Significant factor in the loss of solar cells, optical loss and electrical loss can be divided into. Optical losses occur when the sun will be joined on the surface of the reflection, the shadow loss due to electrodes, and the losses are in the solar wavelengths. Commercialization is currently the most common solar cells on the front of the light incident on the electrode is formed. Therefore, the shadow caused by the electrode to cover the dead area of the sun, due to factors that hinder the absorption of sunlight which is shadowing them and conversion efficiency of solar cells is the inhibition factor. These barriers to eliminate the electrode linewidth reduces the shadowing to reduce, but simply of the electrode line width is reduced electrode area by reducing the series resistance elevates this because to improve the electrode Aspect ratio(height/width) to increase Ag development of paste is required. In this study, aspect ratio of screen-printing method to increase the electrode Ag paste composition of the binder for the characterization of rheology in the shadow of the electrode by reducing the optical loss of the photoelectric conversion efficiency of solar cells to boost the performance measures was. Properties and printability of the paste, the binder resin sintered characteristics that affect the thermal properties are excellent with a good screen printability acrylic resin, ethyl cellulose, using a resin were evaluated. Prepared paste rheology properties, was formed to evaluate the electrode conductivity and aspect ratio.

Design tables and charts for uniform and non-uniform tuned liquid column dampers in harmonic pitching motion

  • Wu, Jong-Cheng;Wang, Yen-Po;Chen, Yi-Hsuan
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.165-188
    • /
    • 2012
  • In the first part of the paper, the optimal design parameters for tuned liquid column dampers (TLCD) in harmonic pitching motion were investigated. The configurations in design tables include uniform and non-uniform TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 for the design in different situations. A closed-form solution of the structural response was used for performing numerical optimization. The results from optimization indicate that the optimal structural response always occurs when the two resonant peaks along the frequency axis are equal. The optimal frequency tuning ratio, optimal head loss coefficient, the corresponding response and other useful quantities are constructed in design tables as a guideline for practitioners. As the value of the head loss coefficient is only available through experiments, in the second part of the paper, the prediction of head loss coefficients in the form of a design chart are proposed based on a series of large scale tests in pitching base motions, aiming to ease the predicament of lacking the information of head loss for those who wishes to make designs without going through experimentation. A large extent of TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 and orifice blocking ratios ranging from 0%, 20%, 40%, 60% to 80% were inspected by means of a closed-form solution under harmonic base motion for identification. For the convenience of practical use, the corresponding empirical formulas for predicting head loss coefficients of TLCDs in relation to the cross-sectional ratio and the orifice blocking ratio were also proposed. For supplemental information to horizontal base motion, the relation of head loss values versus blocking ratios and the corresponding empirical formulas were also presented in the end.