• Title/Summary/Keyword: loss of prestress

Search Result 56, Processing Time 0.026 seconds

Reduction of Prestress Loss in PSC (Prestressed Concrete) Continuous Girder by Employing Block-out Method (지점부 블록아웃 공법으로 연속화된 프리스트레스트 콘크리트 거더의 긴장력 손실 저감)

  • Shin, Kyung-Joon;Kim, Yun-Yong;Kim, Seung-Jin;Choo, Tae-Heon;Lee, Hwan-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 2014
  • Prestressed concrete girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. In certain situations, the prestressing tendon is supposed to be bent by the construction error and the radius of curvature at the continuous joint of PSC girders, and this leads to the loss of prestressing force. However, this kind of prestress loss is not considered in the design and construction processes. This study proves that the prestress loss occurs at the continuous joint due to the local bending of tendon by the construction error or the radius of curvature. Also, a method that can reduce this type of prestress loss is proposed, and proved by the experiment. The result shows that maximum 10% of prestress loss occurs at the continuous joint and the proposed block-out method can reduce the prestress loss ratio by maximum 5%, approximately. This means that the block-out method can enhance the prestressing efficiency of continuous PSC girder bridges.

PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage

  • Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.57-70
    • /
    • 2018
  • For the long-term structural health monitoring of civil structures, the effect of ambient temperature variation has been regarded as one of the critical issues. In this study, a principal component analysis (PCA)-based algorithm is proposed to filter out temperature effects on electromechanical impedance (EMI) monitoring of prestressed tendon anchorages. Firstly, the EMI monitoring via a piezoelectric interface device is described for prestress-loss detection in the tendon anchorage system. Secondly, the PCA-based temperature filtering algorithm tailored to the EMI monitoring of the prestressed tendon anchorage is outlined. The proposed algorithm utilizes the damage-sensitive features obtained from sub-ranges of the EMI data to establish the PCA-based filter model. Finally, the feasibility of the PCA-based algorithm is experimentally evaluated by distinguishing temperature changes from prestress-loss events in a prestressed concrete girder. The accuracy of the prestress-loss detection results is discussed with respect to the EMI features before and after the temperature filtering.

Hybrid Damage Monitoring Scheme of PSC Girder Bridges using Acceleration and Impedance Signature (가속도 및 임피던스 신호를 이용한 PSC 거더교의 하이브리드 손상 모니터링 체계)

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Na, Won-Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.135-146
    • /
    • 2008
  • In this paper, a hybrid damage monitoring scheme for prestressed concrete (PSC) girder bridges by using sequential acceleration and impedance signatures is newly proposed. Damage types of interest include prestress-loss in tendon and flexural stiffness-loss in a concrete girder. The hybrid scheme mainly consists of three sequential phases: damage alarming, damage classification, and damage estimation. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the type of damage is classified into either prestress-loss or flexural stiffness-loss by recognizing patterns of impedance features. In the third phase, the location and the extent of damage are estimated by using two different ways: a mode shape-based damage detection to detect flexural stiffness-loss and a natural frequency-based prestress prediction to identify prestress-loss. The feasibility of the proposed scheme is evaluated on a laboratory-scaled PSC girder model for which hybrid vibration-impedance signatures were measured for several damage scenarios of prestress-loss and flexural stiffness-loss.

Second order effects of external prestress on frequencies of simply supported beam by energy method

  • Fang, De-Ping
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.687-699
    • /
    • 2014
  • Based on the energy method considering the second order effects, the natural frequencies of externally prestressed simply supported beam and the compression softening effect of external prestress force were analyzed. It is concluded that the compression softening effect depends on the loss of external tendon eccentricity. As the number of deviators increases from zero to a large number, the compression softening effect of external prestress force decreases from the effect of axial compression to almost zero, which is consistent with the conclusion mathematically rigorously proven. The frequencies calculated by the energy method conform well to the frequencies by FEM which can simulate the frictionless slide between the external tendon and deviator, the accuracy of the energy method is validated. The calculation results show that the compression softening effect of external prestress force is negligible for the beam with 2 or more deviators due to slight loss of external tendon eccentricity. As the eccentricity and area of tendon increase, the first natural frequency of the simply supported beams noticeably increases, however the effect of the external tendon on other frequencies is negligible.

An Experimental Study to Determine the Effective Prestress force of PSC Beam (PSC 부재의 유효 프리스트레스력 평가를 위한 실험적 연구)

  • Chung, Chul-Hun;Park, Jae-Gyun;Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.21-29
    • /
    • 2008
  • To evaluate the structural integrity of the NPP containment building more rigorously, the effective prestress, which is one of the most affecting elements, needs to be estimated exactly. This paper presents the results of an experimental study to determine the effective prestress force in prestressed concrete beams. It is possible to improve the effective prestress measuring method by test beam, which is being applied for the investigation of the nuclear power plant in operation. If experimentally evaluated Lift-Off method in this study can be coupled with test beam test currently being used in in-service nuclear power plant, it is possible to measure prestress loss of the tendon and the level of the effective prestress load.

Flexural Vibration Characteristics of Prestressed Concrete Girders due to Changes in Prestress Forces (프리스트레스트 콘크리트 거더의 긴장력 변화에 따른 휨 진동 응답 특성)

  • Lee, Jung-Mi;Kim, Jeong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.137-147
    • /
    • 2009
  • In this study, several flexural vibration characteristics of prestressed concrete girders due to changes in prestress forces are experimentally analyzed. In order to achieve the objective, the following approaches are implemented. First, several methods to extract vibration response features from output-only signal are selected. Next, a large-scaled prestressed concrete girder model is constructed to analyze relation between the prestress forces and the vibration features in the prestressed concrete girder. Then acceleration responses are measured from the girder for several prestress force scenarios. Finally, vibration characteristics of the prestressed concrete girder due to change in prestress force are experimentally analyzed. The values of features extracted by the selected methods are reduced due to prestress-loss. Especially, the value of features are linearly reduced in the early prestress-loss.

Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation

  • Huynh, Thanh-Canh;Lee, Kwang-Suk;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.375-393
    • /
    • 2015
  • In this study, local dynamic characteristics of mountable PZT interfaces are numerically analyzed to verify their feasibility on impedance monitoring of the prestress-loss in tendon anchorage subsystems. Firstly, a prestressed tendon-anchorage system with mountable PZT interfaces is described. Two types of mountable interfaces which are different in geometric and boundary conditions are designed for impedance monitoring in the tendon-anchorage subsystems. Secondly, laboratory experiments are performed to evaluate the impedance monitoring via the two mountable PZT interfaces placed on the tendon-anchorage under the variation of prestress forces. Impedance features such as frequency-shifts and root-mean-square-deviations are quantified for the two PZT interfaces. Finally, local dynamic characteristics of the two PZT interfaces are numerically analyzed to verify their performances on impedance monitoring at the tendon-anchorage system. For the two PZT interfaces, the relationships between structural parameters and local vibration responses are examined by modal sensitivity analyses.

Evaluation of Loss of Prestress Force of Tensile Anchor by Long Term Measurement (장기계측을 통한 인장형 앵커의 인장력 손실 평가)

  • Lee, Bongjik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.15-22
    • /
    • 2015
  • In this study, to evaluate the long-term behavior characteristics and the loss of prestress force, the long-term measurement of the tensile anchors in the actual construction was performed and the results were analyzed comparing with the existing estimation. As the reinforcement member used for the purpose of slope stability or uplift-resisting of the permanent structure, etc, the permanent anchor should maintain the functions during the performance period of the structure differently from the temporary anchor. However, as the time passes by, since the relaxation and the creep of the anchor occur constantly, the management for the loss of tensile force is essential to perform the functions stably. So far, the loss of the tensile force has been estimated according to the reduction of the prestress using elasticity theory and using the relaxation value according to the type of tension member and the test using the long-term measurement is limited. Therefore, in this study, the site condition and the ground were investigated for the tensile anchor in the actual construction and the long-term measurement results more than 500 days was analyzed by installing the loadcell, inclinometer and the groundwater level gauge. In addition, the long-term behavior characteristics were evaluated by comparing the disposition of the measured earth retaining wall and the tension force loss of the anchor with the existing interpretation results. In the evaluation results, the most of the tension force loss occurs within 90 days and the loss was measured less than the estimated values.

Construction Sequence Measurement & Analysis for Continuous 8-span Prestressed Concrete(PSC) Girder Bridge (8경간 연속화 프리스트레스 거더교의 시공 계측 및 분석 -서울교 확장교량 적용)

  • 조성웅;이원표;임현태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.985-990
    • /
    • 2001
  • The widened Seoul-Bridge is the first continuous 8-span prestressed concrete(PSC) girder bridge in domain. The construction sequence of the bridge consists of S steps in a large way. The measuring in construction stage includes the determination of the allowable fluctuation value of beam stress in each step and the measurement beam stress during prestessing. The measured tendon prestress force was compared with the design value. When it was compared with the analytic result, the difference between the measured stress and the analytic stress was below allowable error. The friction loss and the anchorage slip loss of the tendon prestress force was lower than the design loss value.

  • PDF

Determination Method for Longitudinal Initial Prestress in Composite Beams with Precast Decks I: Simply Supported Beams (프리캐스트 바닥판을 사용한 강합성보의 교축방향 초기 프리스트레스 산정방법 I : 단순보)

  • Cho, Sun-Kyu;Lee, Jong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.15-24
    • /
    • 2008
  • This paper presents the analytical method for the long-term behavior of simply supported composite beams with precast decks prestressed in the longitudinal direction. The objectives of time-dependent analysis are to estimate losses of prestress on the concrete slab and long-term deflection due to creep and shrinkage of concrete, relaxation of prestressing steel. Also, the time-dependent analysis was carried out using the presented analytical method to evaluate the effects of several parameters on the long-term behavior of composite bridge with precast deck, including geometrical shapes of composite beams, compressive strength of concrete and magnitude of initial prestress. The results of the analysis indicated that, in the effects of geometrical shapes of composite beams, the main parameters affecting the losses of prestress and the long-term deflection were the cross sectional area and the moment of inertia of steel beam, respectively. Finally, the determination method for the required initial prestress was proposed by evaluation of the loss characteristics due to shrinkage and creep of concrete.