• Title/Summary/Keyword: loss of pipe material

Search Result 25, Processing Time 0.027 seconds

Influence of Flowing Velocity and Length of Delivery Hoses on Power Requirement of Agricultural pump. (각종 송출 호오스의 구경 및 길이가 농용양수로의 소요동력에 미치는 영향)

  • 김기대;김성래;이한만
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.46-52
    • /
    • 1979
  • The water delivery hose for agricultural pump is getting popular in rural areas in korea. Friction head loss, discharge, and power requirements were measured in various discharge for different material and diameter of hose to get basic data for economical use in agricultural pump. The results attained in this study were as follows ; 1. Friction head loss increased significantly as the velocity increased, and the difference of velocity between the different diameter of hose was bigger than that between materials, which was resulted in the increase of the friction head loss. 2. Friction head loss in the case of that the velocity with 2m/sec was constant was about 3.53 to 4.01 m/100m in the diameter 3" and about 2.30 to 3.10 m/100m in the diameter 4". Material A of diameter 3" showed the maximum value 8.4m/100m in Reynolds number $2.0\times10^5$, 4" got the minimum value 2.24m/100m, the difference between these values was bigger than 6m per 100 meters in the friction head loss. 3. Darcy-Weisbach formular with friction coefficient [f] calculated by Nikurades formular in the smooth pipe or with friction coefficient [f] calculated on the base of C value 125 in Hazen-Williams formular was available in friction head loss of the water discharger hose in rural areas. 4. Total head increased as friction head loss increased , meanwhile total discharge decreased, and 20 percents of energy was more saved in Material C 4″pipe than Material A 3″pipe in the view point from the discharge per unit power requirement, this phenomenon suggested that long distance pipe would be advantage in larger diameter pipe for save of energy. for save of energy.

  • PDF

Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Effect of Boundary Conditions on failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

A study on the effects of Friction loss of CPVC pipe according to Roughness coefficient in a sprinkler system (스프링클러 시스템에서 조도계수에 따른 CPVC 배관 마찰손실 영향의 연구)

  • Kang, Ung Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.355-362
    • /
    • 2016
  • The pipe material is selected according to the physical and chemical properties of the fluid flowing within it. Because the fluid used in fire extinguish systems is water, the various foreign substances dissolved in it cause scale to form on the pipe wall and accelerate the corrosion and aging of the pipe itself. This results in an increase in the friction loss and eventually degrades the efficiency of the pump. The use of CPVC (Chlorinated Poly-Vinyl Chloride) pipes was confirmed to reduce the friction loss compared to conventional steel pipes in the design and construction stages. The friction loss was found to be 76.64MPa with a C-value of 120 for the steel pipe and 50.72 MPa with a C-value of 150 for the CPVC pipe in an actual apartment construction environment. It was confirmed that the friction loss was improved by about 34% when using the CPVC pipe. When the steel and CPVC pipes were employed in the construction, the construction costs were 1,585,158 and 931,842 won, respectively. Therefore, it was shown that the construction cost was reduced by about 41%. We investigated the safety of the fire extinguishing system and the improvement in the economic performance due to the reduction in the total installed capacity by studying practical applications in the field.

Technical Review on Fitness-for-Service for Buried Pipe by ASME Code Case N-806 (ASME Code Case N-806을 활용한 매설배관 사용적합성 평가 고찰)

  • Park, Sang Kyu;Lee, Yo Seop;So, Il su;Lim, Bu Taek
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.225-231
    • /
    • 2012
  • Fitness-for-Service is a useful technology to determine replacement timing, next inspection timing or in-service when nuclear power plant's buried pipes are damaged. If is possible for buried pipes to be aged by material loss, cracks and occlusion as operating time goes by. Therefore Fitness-for-Service technology for buried pipe is useful for plant industry to perform replacement and repair. Fitness-for-Service for buried pipe is studied in terms of existing code and standard for Fitness-for-Service and a current developing code case. Fitness-for-Service for buried pipe was performed according to Code Case N-806 developed by ASME (American Society of Mechanical Engineers).

A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion (고체입자 충돌침식으로 인한 배관 재질의 손상에 관한 연구)

  • Kim, Kyung-Hoon;Choi, Duk-Hyun;Kim, Hyung-Joon
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.130-138
    • /
    • 2014
  • Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor-based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

Development and Revenue Service of Propulsion System Using Integrated Stack(PEM) and Heat Pipe (일체형 스택(PEM) 및 냉각장치를 적용한 전동차 추진제어장치 개발 및 상용화)

  • Gim, Myung-Han;Lee, Gwang-Guk;Park, Su-Yong
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.680-685
    • /
    • 2007
  • Power semiconductor which is adapted in the rolling stock has a high practicality for capacity of high voltage and high speed switching. but it has a trouble of fever cause of high speed On, Off switching loss and the operating junction temperature is limited to $150^{/circ}C$ because is made from the silicon for the foundation material. Therefore, it is important to find a way out of this trouble and must make the countermeasure. In this research, the caloric value of the integrated PEM is calculated to adapt the optimized heat pipe and the reliability of the heat pipe is demonstrated through the cooling performance test and vibration test.

  • PDF

Evaluation of Prestress Loss in Prestressing Reinforcing Units using Steel Bar and Pipe (강봉 및 강관을 이용한 프리스트레싱 유닛의 긴장 응력 손실 평가)

  • Sim, Jae-Il;Mun, Ju-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.75-82
    • /
    • 2021
  • The objective of this study is to examine the loss of prestressing stress in the developed prestressing reinforcing units using steel bar and pipe (SP). The main parameters were the reinforcing bar type, the magnitude of prestressed force, and prestressing method. The test results showed that the loss of prestressing stress for SP was highest in the initial prestressing step, which was higher for the compression introduction typed specimens than tension introduction typed specimens. The loss of prestressing stress of SP made with P800 was 1.6% for the compression introduction typed specimen with 0.8fy, which was lowest than the other specimens. Meanwhile, the relaxation of SP with the respect to the time ranged between 0.4 and 1.9%, irrespective of SP material type, the magnitude of prestressed force, and prestressing method. These values were less than 2.5%, which is the maximum value for the relaxation of prestressed reinforcing steel bars in design codes. Consequently, considering the loss of stress developed in the initial prestressing step, the developed SP material type, prestressing introduction method, and magnitude are recommended to be P800, compression introduction type, and 0.8fy.

Remote Nozzle Blocking Device of RCS Pipe during Mid-Loop Operation in Nuclear Power Plants

  • Kang, Ki-Sig;Lee, Se-Yub;Chi, Ham-Chung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.571-576
    • /
    • 1996
  • Currently most nuclear power plants(NPPs) are adopted the mid-loop operation to minimize the overhaul period and save the operating cost. For mid-loop operation it is essential to install nozzle dam between RCS pipe and steam generator(SG). Because SG remains more highly contaminated with radioactive material than any other parts of the NPPs, the repairmen are very reluctant to carry out installing nozzle dam inside the SG. Until now, unfortunately, it appears that no practically applicable device was developed to provide the longstanding demand. Also the accidents have been reported by licenser event report during this operation mode due to loss of residual heat removal(RHR). The purpose of this paper is to conduct remotely blocking and disintegration of nozzle of a SG which has the highest radiation exposure during the maintenance in NPPs. The remote nozzle blocking device of a SG includes three bladders, hubs, air controller provisions to supply and contact air pressure into the bladders. This remote nozzle block device will give the larger operation margin to prevent the loss of RHR and minimize the radiation exposure dose to the repairman and shorten the overhaul periods.

  • PDF

Engineering Estimation of Limit Load Solution for Wall-Thinned Pipes Considering Material Properties (재료물성을 고려한 감육배관의 공학적 한계하중해 제시)

  • Choi, Jae-Boong;Kim, Jin-Su;Goo, Bon-Geol;Kim, Young-Jin;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.351-356
    • /
    • 2001
  • A potential loss of structural integrity due to aging of nuclear piping may have a significant effect on the safety of nuclear power plants. In particular, failures due to the erosion and corrosion defects are a major concern. As a result, there is a need to assess the remaining strength of pipe with erosion/corrosion defects. In this paper, a limit load solution for the eroded and corroded SA106 Grade B pipes subjected by internal pressure is developed. based in 3-D finite element analyses, considering a wide range of the shape of pipeline, flaw depth and axial flaw length parametrically.

  • PDF