• Title/Summary/Keyword: loop-mediated isothermal amplification

Search Result 94, Processing Time 0.021 seconds

Monitoring the Reoccurrence of Fire Blight and the Eradication Efficiency of Erwinia amylovora in Burial Sites of Infected Host Plants Using Sentinel Plants (미끼식물을 이용한 화상병 감염 기주 매몰지 내 화상병균 제거 효율 검증 및 병 재발 모니터링)

  • In Woong, Park;Yu-Rim, Song;Nguyen Trung, Vu;Eom-Ji, Oh;In Sun, Hwang;Hyeonheui, Ham;Seong Hwan, Kim;Duck Hwan, Park;Chang-Sik, Oh
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.221-230
    • /
    • 2022
  • The fire blight caused by Erwinia amylovora (Ea) was first reported in 2015 in Korea, and the disease has rapidly spread to 22 regions until 2021. In Korea, all host plants in the apple and pear orchards where fire blight occurred should be eliminated and buried by the Plant Protection Act. To prevent the spread of the disease, all burial sites were prohibited from planting the new host plants for the next three years. To confirm the eradication efficiency of Ea and the reoccurrence of fire blight, the surveillance facilities were established on three burial sites from 2019 to 2020 in Anseong-si, Gyeonggi-do, and Chungju-si, Chungcheongbuk-do. As host plants, five apple trees of fire blight-susceptible cultivar 'Fuji', were planted in each facility. All facilities were enclosed with fences and nets and equipped with two CCTVs, motion sensors, and several other sensors for recording weather conditions to monitor the environment of the sentinel plants in real-time. The sentinel plants were checked for the reoccurrence of fire blight routinely. Suspicious plant parts were collected and analyzed for Ea detection by loop-mediated isothermal amplification polymerase chain reaction and conventional polymerase chain reaction. Until November 2022, Ea has not been detected in all sentinel plants. These results might support that the burial control of infected plants in soil works efficiently to remove Ea and support the possibility to shorten the prohibition period of host plant establishment in the burial sites.

Survival Rate, Developmental Competence and Sex Ratio of Post-thawed Hanwoo Embryo Following Biopsy (한우 수정란의 Biopsy 후 배발달율과 동결-융해후 생존성 및 성비)

  • Cho, S.R.;Choi, S.H.;Kim, H.J.;Choe, C.Y.;Jin, H.J.;Cho, C.Y.;Son, D.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.287-294
    • /
    • 2007
  • The present study was to conducted the sexing efficiency and accuracy of bovine embryo by LAMP (Loop-mediated isothermal amplification) method, the development of the biopsied embryos into re- reformation and the freezability of these blastocysts by slow-freezing and vitrification. In vivo embryos were superovaluted with gonadotropin(Antorin R-10) for 4 days combined with progestrone releasing intravaginal(CIDR) insertion in Hanwoo donors, and in vitro embryos were used blastocyst embryos at Day 7 or Day 8 after post-insemination in vitro. The biopsy of bovine embryo was carried out in a 80μl drop with Ca2+-Mg2+ free D-PBS and the viability of biopsied embryos were evaluated in IVMD medium at over 12 h culture time in 5% CO2 incubator.For embryo sexing, about five or seven blastomeres were isolated from in vitro and in vivo embryos at blastocysts with microblade. and were then subjected to LAMP. The survivability of biopsied embryos were no difference in the development rate to re-formation of blastocysts between in vivo and in vitro embryos(100% and 90% respectively). The rates of sexed embryos were compared according to two groups, the female rate was lower than that the male in the in vivo and in vitro embryos(46% vs, 54% and 40% vs, 60%, respectively). However, there were no difference in the overall sexing ratio between the two groups. The survivability of frozen-thawed sexed embryos were lower in the in vitro than in vivo embryos in the slow-freezing(Group 1) and vitrification method(Group 2), (41.7% vs. 58.8% and 57.1% vs, 77.8. respectively).

Comparison of SureTectTM with phenotypic and genotypic method for the detection of Salmonella spp. and Listeria monocytogenes in ready-to-eat foods (즉석섭취식품에 존재하는 Salmonella spp.와 Listeria monocytogenes의 검출을 위한 SureTectTM와 표현형 및 유전자형 방법의 비교)

  • Kye-Hwan Byun;Byoung Hu Kim;Ah Jin Cho;Eun Her;Sunghee Yoon;Taeik Kim;Sang-Do Ha
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.262-271
    • /
    • 2023
  • The objective of this study is to compare and assess the effectiveness of real-time polymerase chain reaction (RT-PCR), loop-mediated isothermal amplification (LAMP), and the selective agar plate method for the detection of Salmonella spp. and Listeria monocytogenes in ready-to-eat (RTE) foods. In RTE foods, the detection performance of the three methods (RT-PCR [SureTectTM kit and PowerChekTM kit], LAMP [3M MDS], selective agar) were similar at 0-10, 10-50, 50-100, and 100- CFU/mL of Salmonella spp. and L. monocytogenes. We found that with RT-PCR, the Ct value of salad was significantly higher (p<0.05) than other RTE foods, indicating that fiber plays a critical role as an obstacle to the rapid detection of Salmonella spp. However, the Ct value displayed a mixed pattern according to the inoculation level of L. monocytogenes. The use of rapid detection kits and machines mostly depends on the user's choice, with accuracy, ease of use, and economy being the primary considerations. As an RT-PCR kit, SureTectTM and PowerChekTM showed high accuracy in detecting Salmonella spp. and L. monocytogenes in RTE foods, showing that they can replace the existing RT-PCR kits available. Additionally, LAMP also showed excellent detection performance, suggesting that it has the potential to be used as a food safety management tool.

Research status of the development of genetically modified papaya (Carica papaya L.) and its biosafety assessment (GM 파파야 개발 및 생물안전성 평가 연구 동향)

  • Kim, Ho Bang;Lee, Yi;Kim, Chang-Gi
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • Papaya (Carica papaya L.) is one of the crops widely planted in tropical and subtropical areas. The papaya fruit has low calories and are plentiful in vitamins A and C and in minerals. A major problem in papaya production is a plant disease caused by the papaya ringspot virus (PRSV). The first PRSV-resistant GM papaya expressing a PRSV coat protein gene was developed by USA scientists in 1992. The first commercial GM papaya cultivars derived from the event was approved by the US government in 1997. Development of transgenic papayas has been focused on vaccine production and limited agricultural traits, including insect and pathogen resistance, long shelf life, and aluminum and herbicide tolerance. Approximately 17 countries, including the USA and China, produced transgenic papayas and/or commercialized them, which provoked studies on biosafety assessment and development of GM-detection technologies. For the biosafety assessment of potential effects on human health, effects of long-term feeding to model animals have been studied in terms of toxicity and allergenicity. Studies on environmental safety assessment include influence on soil-microbial biodiversity and transfer to soil bacteria of GM selection markers. Many countries, such as Korea, the European Union, and Japan, that have strict regulations for GM crops have serious concerns about unintended introduction of GM cultivars and food commodities using unauthorized GM crops. Transgene- and/or GM event-specific molecular markers and technologies for genomics-based detection of unauthorized GM papaya have been developed and have resulted in the robust detection of GM papayas.