DOI QR코드

DOI QR Code

미끼식물을 이용한 화상병 감염 기주 매몰지 내 화상병균 제거 효율 검증 및 병 재발 모니터링

Monitoring the Reoccurrence of Fire Blight and the Eradication Efficiency of Erwinia amylovora in Burial Sites of Infected Host Plants Using Sentinel Plants

  • 박인웅 (서울대학교 식물면역연구센터) ;
  • 송유림 (경희대학교 원예생명공학과) ;
  • 응우옌 트렁 부 (경희대학교 그린바이오과학원) ;
  • 오엄지 (경희대학교 그린바이오과학원) ;
  • 황인선 (경희대학교 원예생명공학과) ;
  • 함현희 (국립농업과학원 작물보호과) ;
  • 김성환 (단국대학교 생명과학부 미생물전공) ;
  • 박덕환 (강원대학교 생물자원과학부 응용생물학전공) ;
  • 오창식 (서울대학교 식물면역연구센터)
  • In Woong, Park (Plant Immunity Research Center, Seoul National University) ;
  • Yu-Rim, Song (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Nguyen Trung, Vu (Graduate School of Green-Bio Science, Kyung Hee University) ;
  • Eom-Ji, Oh (Graduate School of Green-Bio Science, Kyung Hee University) ;
  • In Sun, Hwang (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Hyeonheui, Ham (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Seong Hwan, Kim (School of Life Sciences, Dankook University) ;
  • Duck Hwan, Park (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University) ;
  • Chang-Sik, Oh (Plant Immunity Research Center, Seoul National University)
  • 투고 : 2022.11.30
  • 심사 : 2022.12.22
  • 발행 : 2022.12.31

초록

Erwinia amylovora에 의해 발생하는 화상병은 2015년에 국내에서 처음으로 보고된 이후 2021년 기준으로 전국 22개 지역으로 전파되었다. 우리나라는 식물방역법에 따라 화상병이 발생한 사과 및 배 과원은 발생주율을 기준으로 모든 기주식물들을 완전히 제거하여 구덩이에 매몰처리한다. 이후, 3년간 화상병균 전파를 막기 위해 매몰지 위에 기주식물 식재를 금하고 있다. 매몰처리법에 의한 화상병균 박멸 효과를 확인하기 위하여, 화상병 감수성 식물을 미끼식물로 이용하여 매몰지에 식재 후 화상병 재발 유무를 확인하였다. 이를 위해, 2019년부터 2021년에 매몰처리한 경기도 안성시와 충북 충주시 소재 매몰지 3곳을 선정하여 미끼식물 감시시설을 설치하였다. 화상병 감수성 식물인 사과(부사)를 미끼식물로 선정하고, 각 감시시설당 5주를 식재하였다. 감시시설은 울타리와 그물로 격리하였다. 또한, 실시간 모니터링을 위한 CCTV와 동작감지기, 그리고 현지 기상상황을 기록하는 센서를 설치하였다. 감시시설을 주기적으로 방문하여 육안으로 화상병 발병 유무를 확인하였다. 미끼식물로부터 화상병 의심 증상을 나타내는 표본을 채취하고 화상병균 특이적 프라이머를 이용하여 loop-mediated isothermal amplification polymerase chain reaction (PCR)과 conventional PCR을 통해 화상병균 감염 유무를 확인하였다. 그 결과, 현재까지 어떠한 미끼식물에서도 화상병균은 검출되지 않았다. 따라서, 현재 시행되고 있는 매몰 후 화상병 기주식물 3년 식재 금지 조항을 완화하는 근거로 본 연구 결과를 제시하고자 하며, 이를 통해 국내 과수산업과 농가의 피해를 최소화하는 데 기여할 수 있을 것이라 생각된다.

The fire blight caused by Erwinia amylovora (Ea) was first reported in 2015 in Korea, and the disease has rapidly spread to 22 regions until 2021. In Korea, all host plants in the apple and pear orchards where fire blight occurred should be eliminated and buried by the Plant Protection Act. To prevent the spread of the disease, all burial sites were prohibited from planting the new host plants for the next three years. To confirm the eradication efficiency of Ea and the reoccurrence of fire blight, the surveillance facilities were established on three burial sites from 2019 to 2020 in Anseong-si, Gyeonggi-do, and Chungju-si, Chungcheongbuk-do. As host plants, five apple trees of fire blight-susceptible cultivar 'Fuji', were planted in each facility. All facilities were enclosed with fences and nets and equipped with two CCTVs, motion sensors, and several other sensors for recording weather conditions to monitor the environment of the sentinel plants in real-time. The sentinel plants were checked for the reoccurrence of fire blight routinely. Suspicious plant parts were collected and analyzed for Ea detection by loop-mediated isothermal amplification polymerase chain reaction and conventional polymerase chain reaction. Until November 2022, Ea has not been detected in all sentinel plants. These results might support that the burial control of infected plants in soil works efficiently to remove Ea and support the possibility to shorten the prohibition period of host plant establishment in the burial sites.

키워드

과제정보

This work was supported by the "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ014219022022)" of the Rural Development Administration, Republic of Korea.

참고문헌

  1. Ahn, M.-I. and Yun, S. C. 2021. Application of the Maryblyt model for the infection of fire blight on apple trees at Chungju, Jecheon, and Eumsung during 2015-2020. Plant Pathol. J 37: 543-554. https://doi.org/10.5423/PPJ.OA.07.2021.0120
  2. Barham, E. 2016. The unique role of sentinel trees, botanic gardens and arboreta in safeguarding global plant health. Plant Biosyst. 150: 377-380. https://doi.org/10.1080/11263504.2016.1179231
  3. Choi, H. J., Kim, Y. J., Lim, Y.-J. and Park, D. H. 2019. Survival of Erwinia amylovora on surfaces of materials used in orchards. Res. Plant Dis. 25: 89-93. https://doi.org/10.5423/RPD.2019.25.2.89
  4. Choi, H. J., Kim, Y. J. and Park, D. H. 2022a. Extended longevity of Erwinia amylovora vectored by honeybees under in vitro conditions and its capacity for dissemination. Plant Pathol. 71: 762-771. https://doi.org/10.1111/ppa.13489
  5. Choi, J. H., Kim, J.-Y. and Park, D. H. 2022b. Evidence of greater competitive fitness of Erwinia amylovora over E. pyrifoliae in Korean isolates. Plant Pathol. J. 38: 355-365. https://doi.org/10.5423/PPJ.OA.04.2022.0056
  6. Doolotkeldieva, T. and Bobusheva, S. 2016. Fire blight disease caused by Erwinia amylovora on Rosaceae plants in Kyrgyzstan and biological agents to control this disease. Adv. Microbiol. 6: 831-851. https://doi.org/10.4236/aim.2016.611080
  7. Drenova, N. V., Isin, M. M., Dzhaimurzina, A. A., Zharmukhamedova, G. A. and Aitkulov, A. K. 2013. Bacterial fire blight in the republic of Kazakhstan. Plant Health Res. Pract. 1: 44-48.
  8. Duffy, B., Scharer, H.-J., Bunter, M., Klay, A. and Holliger, K. E. 2005. Regulatory measures against Erwinia amylovora in Switzerland. EPPO Bull. 35: 239-244. https://doi.org/10.1111/j.1365-2338.2005.00820.x
  9. Duncan, J. M. 1976. The use of bait plants to detect Phytophthora fragariae in soil. Trans. Br. Mycol. Soc. 66: 85-89. https://doi.org/10.1016/s0007-1536(76)80096-4
  10. El-Helaly, A. F., Abo-el-Dahab, M. K. and El-Goorani, M. A. 1964. The occurrence of the fire blight disease of pear in Egypt. Phytopathol. Mediterr. 3: 156-163.
  11. Emmett, B. J. and Baker, L. A. E. 1971. Insect transmission of fireblight. Plant Pathol. 20: 41-45. https://doi.org/10.1111/j.1365-3059.1971.tb00507.x
  12. Fatmi, M., Bougsiba, M. and Saoud, H. 2008. First report of fire blight caused by Erwinia amylovora on pear, apple, and quince in Morocco. Plant Dis. 92: 314.
  13. Ham, H., Kim, K., Yang, S., Kong, H. G., Lee, M.-H., Jin, Y. J. et al. 2022a. Discrimination and detection of Erwinia amylovora and Erwinia pyrifoliae with a single primer set. Plant. Pathol. J. 38: 194-202. https://doi.org/10.5423/PPJ.OA.03.2022.0027
  14. Ham, H., Lee, K. J., Hong, S. J., Kong, H. G., Lee, M.-H., Kim, H.-R. et al. 2020. Outbreak of fire blight of apple and pear and its characteristics in Korea in 2019. Res. Plant Dis. 26: 239-249. (In Korean) https://doi.org/10.5423/RPD.2020.26.4.239
  15. Ham, H., Oh, G.-R., Park, D. S. and Lee, Y. H. 2022b. Survey of oxolinic acid-resistant Erwinia amylovora in Korean apple and pear orchards, and the fitness impact of constructed mutants. Plant Pathol. J. 38: 482-489.
  16. Hildebrand, M., Dickler, E. and Geider, K. 2000. Occurrence of Erwinia amylovora on insects in a fire blight orchard. J. Phytopathol. 148: 251-256. https://doi.org/10.1046/j.1439-0434.2000.00504.x
  17. Khan, M. A., Zhao, Y. F. and Korban, S. S. 2012. Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol. Biol. Rep. 30: 247-260. https://doi.org/10.1007/s11105-011-0334-1
  18. Kim, M.-S. and Yun, S.-C. 2018. MARYBLYT study for potential spread and prediction of future infection risk of fire blight on blossom of Singo pear in Korea. Res. Plant Dis. 24: 182-192. (In Korean) https://doi.org/10.5423/RPD.2018.24.3.182
  19. Kim, S.-H., Cho, G., Lee, S. I., Kim, D.-R. and Kwak, Y.-S. 2021. Comparison of bacterial community of healthy and Erwinia amylovora infected apples. Plant Pathol. J. 37: 396-403. https://doi.org/10.5423/PPJ.NT.04.2021.0062
  20. Kim, Y. E., Kim, J. Y., Noh, H. J., Lee, D. H., Kim, S. S. and Kim, S. H. 2019. Investigating survival of Erwinia amylovora from fire blight-diseased apple and pear trees buried in soil as control measure. Korean J. Environ. Agric. 38: 269-272. (In Korean) https://doi.org/10.5338/KJEA.2019.38.4.36
  21. Lagonenko, A. L., Komardina, V. S., Nikolaichik, Y. A. and Evtushenkov, A. N. 2008. First report of Erwinia amylovora fire blight in Belarus. J. Phytopathol. 156: 638-640. https://doi.org/10.1111/j.1439-0434.2008.01420.x
  22. Lecoq, H., Desbiez, C., Wipf-Scheibel, C. and Girard, M. 2003. Potential involvement of melon fruit in the long distance dissemination of cucurbit potyviruses. Plant Dis. 87: 955-959. https://doi.org/10.1094/pdis.2003.87.8.955
  23. Lee, H. J., Lee, S. W., Suh, S.-J. and Hyun, I.-H. 2022. Recent spread and potential pathways for fire blight in South Korea. EPPO Bull. 52: 135-140. https://doi.org/10.1111/epp.12835
  24. Lee, M. S., Lee, I., Kim, S. K., Oh, C.-S. and Park, D. H. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 24: 41-51. (In Korean) https://doi.org/10.5423/RPD.2018.24.1.41
  25. Mansfield, S., McNeill, M. R., Aalders, L. T., Bell, N. L., Kean, J. M., Barratt, B. I. P. et al. 2019. The value of sentinel plants for risk assessment and surveillance to support biosecurity. NeoBiota 48: 1-24. https://doi.org/10.3897/neobiota.48.34205
  26. Murakami, H., Tsushima, S., Akimoto, T. and Shishido, Y. 2001. Reduction of spore density of Plasmodiophora brassicae in soil by decoy plants. J. Gen. Plant Pathol. 67: 85-88. https://doi.org/10.1007/PL00012994
  27. Norelli, J. L., Jones, A. L. and Aldwinckle, H. S. 2003. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 87: 756-765. https://doi.org/10.1094/pdis.2003.87.7.756
  28. Park, D. H., Lee, Y.-G., Kim, J.-S., Cha, J.-S. and Oh, C.-S. 2017. Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J. Plant Pathol. 99: 59-63. https://doi.org/10.4454/jpp.v99i0.3918
  29. Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J. et al. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100: 1946.
  30. Park, J., Kim, B., Song, S., Lee, Y. W. and Roh, E. 2022. Isolation of nine bacteriophages shown effective against Erwinia amylovora in Korea. Plant Pathol. J. 38: 248-253. https://doi.org/10.5423/PPJ.NT.11.2021.0172
  31. Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C.-S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 34: 445-450. https://doi.org/10.5423/PPJ.NT.06.2018.0100
  32. Pastalka, T., Rooney-Latham, S., Kosta, K., Suslow, K., Huffman, V., Ghosh, S. et al. 2017. Monitoring using a sentinel plant system reveals very limited aerial spread of Phytophthora ramorum from infected ornamental plants in a quarantine research nursery. Plant Health Prog. 18: 9-16. https://doi.org/10.1094/php-rs-16-0050
  33. Peil, A., Bus, V. G. M., Geider, K., Richter, K., Flachowsky, H. and Hanke, M.-V. 2009. Improvement of fire blight resistance in apple and pear. Int. J. Plant. Breed. 3: 1-27.
  34. Powney, R., Beer, S. V., Plummer, K., Luck, J. and Rodoni, B. 2011. The specificity of PCR-based protocols for detection of Erwinia amylovora. Australas. Plant Pathol. 40: 87-97. https://doi.org/10.1007/s13313-010-0017-7
  35. Shin, D.-S., Heo, G.-I., Son, S.-H., Oh, C.-S., Lee, Y.-K. and Cha, J.-S. 2018. Development of an improved loop-mediated isothermal amplification assay for on-site diagnosis of fire blight in apple and pear. Plant Pathol. J. 34: 191-198. https://doi.org/10.5423/PPJ.FT.03.2018.0055
  36. Shtienberg, D., Manulis-Sasson, S., Zilberstaine, M., Oppenheim, D. and Shwartz, H. 2015. The incessant battle against fire blight in pears: 30 years of challenges and successes in managing the disease in Israel. Plant Dis. 99: 1048-1058. https://doi.org/10.1094/PDIS-01-15-0101-FE
  37. Sletten, A., Talgo, V., Rafoss, T. and Melboe, N. S. 2017. Fire blight in Norway: a review of strategies and control measures from 1986 to 2016. J. Plant Pathol. 99: 137-139.
  38. Smits, T. H. M., Guerrero-Prieto, V. M., Hernandez-Escarcega, G., Blom, J., Goesmann, A., Rezzonico, F. et al. 2014. Whole-genome sequencing of Erwinia amylovora strains from Mexico detects single nucleotide polymorphisms in rpsL conferring streptomycin resistance and in the avrRpt2 effector altering host interactions. Genome Announc. 2: e01229-13.
  39. Sosnowski, M. R., Fletcher, J. D., Daly, A. M., Rodoni, B. C. and Viljanen-Rollinson, S. L. H. 2009. Techniques for the treatment, removal and disposal of host material during programmes for plant pathogen eradication. Plant Pathol. 58: 621-635. https://doi.org/10.1111/j.1365-3059.2009.02042.x
  40. Van der Zwet, T., Orolaza-Halbrendt, N. and Zeller, W. 2012. Fire Blight: History, Biology, and Management. APS Press, St. Paul, MN, USA. 421 pp.
  41. Zhao, Y.-Q., Tian, Y.-l., Wang, L.-M., Geng, G.-M., Zhao, W.-J., Hu, B.-S. et al. 2019. Fire blight disease, a fast-approaching threat to apple and pear production in China. J. Integr. Agric. 18: 815-820. https://doi.org/10.1016/S2095-3119(18)62033-7
  42. Wang, J., Gao, J., Bayinkexike, Muyassar, M., Zhang, J. and Tian, Y. 2022. Blocking field spread of fire blight by electric heating automatic disinfection pruning scissors. Plant Quar. 2: 25-28.