Browse > Article
http://dx.doi.org/10.5423/RPD.2022.28.4.221

Monitoring the Reoccurrence of Fire Blight and the Eradication Efficiency of Erwinia amylovora in Burial Sites of Infected Host Plants Using Sentinel Plants  

In Woong, Park (Plant Immunity Research Center, Seoul National University)
Yu-Rim, Song (Department of Horticultural Biotechnology, Kyung Hee University)
Nguyen Trung, Vu (Graduate School of Green-Bio Science, Kyung Hee University)
Eom-Ji, Oh (Graduate School of Green-Bio Science, Kyung Hee University)
In Sun, Hwang (Department of Horticultural Biotechnology, Kyung Hee University)
Hyeonheui, Ham (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Seong Hwan, Kim (School of Life Sciences, Dankook University)
Duck Hwan, Park (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University)
Chang-Sik, Oh (Plant Immunity Research Center, Seoul National University)
Publication Information
Research in Plant Disease / v.28, no.4, 2022 , pp. 221-230 More about this Journal
Abstract
The fire blight caused by Erwinia amylovora (Ea) was first reported in 2015 in Korea, and the disease has rapidly spread to 22 regions until 2021. In Korea, all host plants in the apple and pear orchards where fire blight occurred should be eliminated and buried by the Plant Protection Act. To prevent the spread of the disease, all burial sites were prohibited from planting the new host plants for the next three years. To confirm the eradication efficiency of Ea and the reoccurrence of fire blight, the surveillance facilities were established on three burial sites from 2019 to 2020 in Anseong-si, Gyeonggi-do, and Chungju-si, Chungcheongbuk-do. As host plants, five apple trees of fire blight-susceptible cultivar 'Fuji', were planted in each facility. All facilities were enclosed with fences and nets and equipped with two CCTVs, motion sensors, and several other sensors for recording weather conditions to monitor the environment of the sentinel plants in real-time. The sentinel plants were checked for the reoccurrence of fire blight routinely. Suspicious plant parts were collected and analyzed for Ea detection by loop-mediated isothermal amplification polymerase chain reaction and conventional polymerase chain reaction. Until November 2022, Ea has not been detected in all sentinel plants. These results might support that the burial control of infected plants in soil works efficiently to remove Ea and support the possibility to shorten the prohibition period of host plant establishment in the burial sites.
Keywords
Erwinia amylovora; Fire blight; Monitoring; Sentinel plants; Surveillance facility;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Ahn, M.-I. and Yun, S. C. 2021. Application of the Maryblyt model for the infection of fire blight on apple trees at Chungju, Jecheon, and Eumsung during 2015-2020. Plant Pathol. J 37: 543-554.   DOI
2 Barham, E. 2016. The unique role of sentinel trees, botanic gardens and arboreta in safeguarding global plant health. Plant Biosyst. 150: 377-380.   DOI
3 Choi, H. J., Kim, Y. J., Lim, Y.-J. and Park, D. H. 2019. Survival of Erwinia amylovora on surfaces of materials used in orchards. Res. Plant Dis. 25: 89-93.   DOI
4 Choi, H. J., Kim, Y. J. and Park, D. H. 2022a. Extended longevity of Erwinia amylovora vectored by honeybees under in vitro conditions and its capacity for dissemination. Plant Pathol. 71: 762-771.   DOI
5 Choi, J. H., Kim, J.-Y. and Park, D. H. 2022b. Evidence of greater competitive fitness of Erwinia amylovora over E. pyrifoliae in Korean isolates. Plant Pathol. J. 38: 355-365.   DOI
6 Doolotkeldieva, T. and Bobusheva, S. 2016. Fire blight disease caused by Erwinia amylovora on Rosaceae plants in Kyrgyzstan and biological agents to control this disease. Adv. Microbiol. 6: 831-851.   DOI
7 Drenova, N. V., Isin, M. M., Dzhaimurzina, A. A., Zharmukhamedova, G. A. and Aitkulov, A. K. 2013. Bacterial fire blight in the republic of Kazakhstan. Plant Health Res. Pract. 1: 44-48.
8 Duffy, B., Scharer, H.-J., Bunter, M., Klay, A. and Holliger, K. E. 2005. Regulatory measures against Erwinia amylovora in Switzerland. EPPO Bull. 35: 239-244.   DOI
9 Duncan, J. M. 1976. The use of bait plants to detect Phytophthora fragariae in soil. Trans. Br. Mycol. Soc. 66: 85-89.   DOI
10 El-Helaly, A. F., Abo-el-Dahab, M. K. and El-Goorani, M. A. 1964. The occurrence of the fire blight disease of pear in Egypt. Phytopathol. Mediterr. 3: 156-163.
11 Emmett, B. J. and Baker, L. A. E. 1971. Insect transmission of fireblight. Plant Pathol. 20: 41-45.   DOI
12 Fatmi, M., Bougsiba, M. and Saoud, H. 2008. First report of fire blight caused by Erwinia amylovora on pear, apple, and quince in Morocco. Plant Dis. 92: 314.
13 Ham, H., Kim, K., Yang, S., Kong, H. G., Lee, M.-H., Jin, Y. J. et al. 2022a. Discrimination and detection of Erwinia amylovora and Erwinia pyrifoliae with a single primer set. Plant. Pathol. J. 38: 194-202.   DOI
14 Ham, H., Lee, K. J., Hong, S. J., Kong, H. G., Lee, M.-H., Kim, H.-R. et al. 2020. Outbreak of fire blight of apple and pear and its characteristics in Korea in 2019. Res. Plant Dis. 26: 239-249. (In Korean)   DOI
15 Ham, H., Oh, G.-R., Park, D. S. and Lee, Y. H. 2022b. Survey of oxolinic acid-resistant Erwinia amylovora in Korean apple and pear orchards, and the fitness impact of constructed mutants. Plant Pathol. J. 38: 482-489.
16 Hildebrand, M., Dickler, E. and Geider, K. 2000. Occurrence of Erwinia amylovora on insects in a fire blight orchard. J. Phytopathol. 148: 251-256.   DOI
17 Kim, Y. E., Kim, J. Y., Noh, H. J., Lee, D. H., Kim, S. S. and Kim, S. H. 2019. Investigating survival of Erwinia amylovora from fire blight-diseased apple and pear trees buried in soil as control measure. Korean J. Environ. Agric. 38: 269-272. (In Korean)   DOI
18 Khan, M. A., Zhao, Y. F. and Korban, S. S. 2012. Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol. Biol. Rep. 30: 247-260.   DOI
19 Kim, M.-S. and Yun, S.-C. 2018. MARYBLYT study for potential spread and prediction of future infection risk of fire blight on blossom of Singo pear in Korea. Res. Plant Dis. 24: 182-192. (In Korean)   DOI
20 Kim, S.-H., Cho, G., Lee, S. I., Kim, D.-R. and Kwak, Y.-S. 2021. Comparison of bacterial community of healthy and Erwinia amylovora infected apples. Plant Pathol. J. 37: 396-403.   DOI
21 Lagonenko, A. L., Komardina, V. S., Nikolaichik, Y. A. and Evtushenkov, A. N. 2008. First report of Erwinia amylovora fire blight in Belarus. J. Phytopathol. 156: 638-640.   DOI
22 Lecoq, H., Desbiez, C., Wipf-Scheibel, C. and Girard, M. 2003. Potential involvement of melon fruit in the long distance dissemination of cucurbit potyviruses. Plant Dis. 87: 955-959.   DOI
23 Lee, H. J., Lee, S. W., Suh, S.-J. and Hyun, I.-H. 2022. Recent spread and potential pathways for fire blight in South Korea. EPPO Bull. 52: 135-140.   DOI
24 Lee, M. S., Lee, I., Kim, S. K., Oh, C.-S. and Park, D. H. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 24: 41-51. (In Korean)   DOI
25 Mansfield, S., McNeill, M. R., Aalders, L. T., Bell, N. L., Kean, J. M., Barratt, B. I. P. et al. 2019. The value of sentinel plants for risk assessment and surveillance to support biosecurity. NeoBiota 48: 1-24.   DOI
26 Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J. et al. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100: 1946.
27 Murakami, H., Tsushima, S., Akimoto, T. and Shishido, Y. 2001. Reduction of spore density of Plasmodiophora brassicae in soil by decoy plants. J. Gen. Plant Pathol. 67: 85-88.   DOI
28 Norelli, J. L., Jones, A. L. and Aldwinckle, H. S. 2003. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 87: 756-765.   DOI
29 Park, D. H., Lee, Y.-G., Kim, J.-S., Cha, J.-S. and Oh, C.-S. 2017. Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J. Plant Pathol. 99: 59-63.   DOI
30 Park, J., Kim, B., Song, S., Lee, Y. W. and Roh, E. 2022. Isolation of nine bacteriophages shown effective against Erwinia amylovora in Korea. Plant Pathol. J. 38: 248-253.   DOI
31 Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C.-S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 34: 445-450.   DOI
32 Pastalka, T., Rooney-Latham, S., Kosta, K., Suslow, K., Huffman, V., Ghosh, S. et al. 2017. Monitoring using a sentinel plant system reveals very limited aerial spread of Phytophthora ramorum from infected ornamental plants in a quarantine research nursery. Plant Health Prog. 18: 9-16.   DOI
33 Peil, A., Bus, V. G. M., Geider, K., Richter, K., Flachowsky, H. and Hanke, M.-V. 2009. Improvement of fire blight resistance in apple and pear. Int. J. Plant. Breed. 3: 1-27.
34 Sletten, A., Talgo, V., Rafoss, T. and Melboe, N. S. 2017. Fire blight in Norway: a review of strategies and control measures from 1986 to 2016. J. Plant Pathol. 99: 137-139.
35 Powney, R., Beer, S. V., Plummer, K., Luck, J. and Rodoni, B. 2011. The specificity of PCR-based protocols for detection of Erwinia amylovora. Australas. Plant Pathol. 40: 87-97.   DOI
36 Shin, D.-S., Heo, G.-I., Son, S.-H., Oh, C.-S., Lee, Y.-K. and Cha, J.-S. 2018. Development of an improved loop-mediated isothermal amplification assay for on-site diagnosis of fire blight in apple and pear. Plant Pathol. J. 34: 191-198.   DOI
37 Shtienberg, D., Manulis-Sasson, S., Zilberstaine, M., Oppenheim, D. and Shwartz, H. 2015. The incessant battle against fire blight in pears: 30 years of challenges and successes in managing the disease in Israel. Plant Dis. 99: 1048-1058.   DOI
38 Smits, T. H. M., Guerrero-Prieto, V. M., Hernandez-Escarcega, G., Blom, J., Goesmann, A., Rezzonico, F. et al. 2014. Whole-genome sequencing of Erwinia amylovora strains from Mexico detects single nucleotide polymorphisms in rpsL conferring streptomycin resistance and in the avrRpt2 effector altering host interactions. Genome Announc. 2: e01229-13.
39 Sosnowski, M. R., Fletcher, J. D., Daly, A. M., Rodoni, B. C. and Viljanen-Rollinson, S. L. H. 2009. Techniques for the treatment, removal and disposal of host material during programmes for plant pathogen eradication. Plant Pathol. 58: 621-635.   DOI
40 Van der Zwet, T., Orolaza-Halbrendt, N. and Zeller, W. 2012. Fire Blight: History, Biology, and Management. APS Press, St. Paul, MN, USA. 421 pp.
41 Zhao, Y.-Q., Tian, Y.-l., Wang, L.-M., Geng, G.-M., Zhao, W.-J., Hu, B.-S. et al. 2019. Fire blight disease, a fast-approaching threat to apple and pear production in China. J. Integr. Agric. 18: 815-820.   DOI
42 Wang, J., Gao, J., Bayinkexike, Muyassar, M., Zhang, J. and Tian, Y. 2022. Blocking field spread of fire blight by electric heating automatic disinfection pruning scissors. Plant Quar. 2: 25-28.