• Title/Summary/Keyword: loop length

Search Result 309, Processing Time 0.034 seconds

All-Synthesizable 5-Phase Phase-Locked Loop for USB2.0

  • Seong, Kihwan;Lee, Won-Cheol;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.352-358
    • /
    • 2016
  • A 5-phase phase-locked loop (PLL) for USB2.0 applications was implemented by using an all-synthesis technique. The length of the time-to-digital converter for the fine phase detector was halved by the operation of a coarse phase detector that uses 5-phase clocks. The maximum time difference between the rising edges of two adjacent-phase clocks was 6 ps at 480 MHz. The PLL chip in a 65-nm process occupies $0.038mm^2$, consumes 4.8 mW at 1.2 V. The measured rms and peak-to-peak output jitters are 8.6 ps and 45 ps, respectively.

Newly Observed Phase Coherent Electron Transport Properties in the Mesoscopic Loop Structure of Aluminum Wire

  • Lee, Seong-Jae;Park, Kyoung-Wan;Shin, Min-Cheol;Lee, El-Hang;Kim, Ju-Jin;Lee, Hu-Jong
    • ETRI Journal
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 1994
  • We have identified two new features related to the coherent transport in the mesoscopic loop structure of aluminum wire, including the autocorrelation of the conductance fluctuations beyond $B_c$ and fine structure in the low-field magnetoresistance curve in the superconducting transition regime, which, to the best of our knowledge, have not been reported in the literature. Since the electrons in Al have a phase coherence length larger than $1\;{\mu}m$ at or below T = 3K, which is comparable to the dimensions of the structure, the wave nature of the electronic transport has been clearly observed: the universal conductance fluctuations, the Aharonov-Bohm oscillations, and the Altshuler-Aronov-Spivak oscillations. Due to the transition of Al to a superconducting state at T = 1.3 K, the coherent phenomena of Cooper pairs, i.e., the Little-Parks oscillations, have also been observed.

  • PDF

Implementation of the Adaptive Line Equalizer for a Digital Subscriber Loop Transmission System Operating at 400Kb/s (400Kb/s급 디지털 가입자 전송 시스템에 적합한 적응형 선로 등화기의 구현)

  • Youm, Heung Youl;Kim, Jae Guen;Cho, Kyu Seob
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.387-393
    • /
    • 1987
  • The introduction of a digiral subscriber loop transmission system necessitates an optimized line interface solution. To meet this objective an adaptive line equalizer has been developed. The equalizer can be compensated up to 42 dB line loss at 200KHz, and operated up to 3.2 Km transmission length (0.4 mm\ulcornercable)at a rate of 400Kb/s. This has been builted using a variable \ulcorner equalizer to compensate a frequency-attenuation characteristics of metallic cable, an AGC (automatic gain control) circuits with simple control algorithm, and various filters to minimize a transmission constraints over subscriber loop. The purpose of this paper is to present a short description of a design of the adaptive line equalizer with a summary of implementation results. Some design concepts and considerations which results in an implementation of the equalizer are also given.

  • PDF

Floating Inverter Amplifiers with Enhanced Voltage Gains Employing Cross-Coupled Body Biasing

  • Jae Hoon Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.12-17
    • /
    • 2024
  • Floating inverter amplifiers (FIAs) have recently garnered considerable attention owing to their high energy efficiency and inherent resilience to input common-mode voltages and process-voltage-temperature variations. Since the voltage gain of a simple FIA is low, it is typically cascaded or cascoded to achieve a higher voltage gain. However, cascading poses stability concerns in closed-loop applications, while cascoding limits the output swing. This study introduces a gain-enhanced FIA that features cross-coupled body biasing. Through simulations, it is demonstrated that the proposed FIA designed using a 28-nm complementary metal-oxide-semiconductor technology with a 1-V power supply can achieve a high voltage gain (> 90 dB) suitable for dynamic open-loop applications. The proposed FIA can also be used as a closed-loop amplifier by adjusting the amount of positive feedback due to the cross-coupled body biasing. The capability of achieving a high gain with minimum-length devices makes the proposed FIA a promising candidate for low-power, high-speed sensor interface systems.

Branch Loop Antenna for the Mobile Handset (휴대 단말기용 브랜치 루프안테나)

  • Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.58-65
    • /
    • 2013
  • It's introduced a BLA(Branch Loop Antenna) that is modified from conventional loop, and verified antenna performances for applying to mobile handset. Branch elements are added to a rectangular loop, and low resonance is obtained by the length of the branch line. When resonance frequency of a single loop is 2.5GHz, BLA had near 900 MHz under the same antenna size. Multiple resonances are established by the locations of branch connection and their lengths. By the implementation and measurement for the dual band BLA, it's showed 75MHz -10dB bandwidth and -3.03~-1.46dBi average gains with 49.73~71.39% efficiencies at GSM900 band, and 90MHz -6dB bandwidth and -8.14~-2.17dBi average gains with 15.34~60.62% efficiencies at DCS1900 band. And H-plane radiation patterns were omni-directional. These performances are good for the mobile handset antenna.

Flow Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants in Plain and Microfin Tubes of 6.0 mm Inside Diameter (내경 6 mm 평관과 마이크로 핀관 내에서 R22 대체냉매의 흐름응축 열전달계수)

  • 박기호;서영호;박기정;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.444-451
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 6.0∼6.16 mm inside diameter and 1.0 m length. Refrigerants were cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/m2s. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 4∼16% and 16∼42% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 3∼9% for a microfin tube. Heat transfer enhancement factors of a microfin tube were 1.3∼1.9.

A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube (알루미늄 다채널 평판관내 R22의 흐름응축 열전달 성능 비교)

  • Seo, Young-Ho;Lim, Dae-Taeg;Park, Ki-Jung;Jung, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1270-1275
    • /
    • 2004
  • Flow condensation heat transfer coefficients(HTCs) of R22 and R134a were measured on horizontal aluminum multi-channel tube. The experimental apparatus was composed of three main parts ; a refrigerant loop, a water loop and a water-ethylene glycol loop. The test section in the refrigerant loop was made of aluminum multi-channel tube of 1.4 mm hydraulic diameter and 0.53 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. The data scan vapor qualities $(0.1{\sim}0.9)$, mass flux ($200{\sim}400$ $kg/m^{2}s$) and heat flux ($7.3{\sim}7.7$ $kW/m^{2}$) at $40{\times}0.2^{\circ}C$ saturation temperature in small hydraulic diameter tube. It was found that some well-known previous correlations were not suitable for multichannel tube. So, It must develop new correlations for multi-channel tubes.

  • PDF

An Experimental Study on the Effect of Ground Heat Exchanger to the Overall Thermal Conductivity (지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향에 관한 실험적 연구)

  • Kong, Hyoung-Jin;Lim, Hyo-Jae;Choi, Jae-Ho;Sohn, Byong-Hu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.45-51
    • /
    • 2009
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

A Study on the Condensation Heat Transfer Characteristics of a Loop Heat Pipe Heat Exchanger for High Speed Rotary Shaft Cooling (고속 회전축 냉각용 루우프 히트파이프 열교환기의 응축열전달 특성에 관한 연구)

  • Cho, Dong-Hyun;Lee, Jong-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.147-152
    • /
    • 2017
  • In the present study, we used a loop thermosyphon heat exchanger consisting of condensers with internal fins and external plate fins which are 480 mm wide, 68 mm long, and 1,000 mm high. The heat transfer pipes in the heat exchanger were 15 mm in diameter and 1,000 mm in length, and 98 heat transfer pipes were installed in the heat exchanger. According to the experimental results, as the spaces between the internal discontinuous pins decreased, the frequency of pressure drops increased and changes in temperature at the outlet of the condenser were shown to be a little smaller. Therefore, we can see that as the spaces between internal discontinuous pins decreased, the heat transfer performance increased. For the loop heat pipe heat exchanger consisting of a condenser with internal and plate fins, as the temperature of the air flowing into the condenser increased, the condensation heat transfer rate also increased, and as the condenser refrigerant inflow temperature increased, the condensation heat transfer rate increased as well.

Flow Boiling Heat Transfer Characteristics of R22 Alternative Refrigerants in a Horizontal Microfin Tube (R22 대체 냉매의 마이크로 핀관내 흐름 비등 열전달 특성)

  • 한재웅;김신종;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.692-700
    • /
    • 2001
  • Flow boiling heat transfer coefficients(HTCs) of R22, R134a, R407C, and R410A were measured experimentally for a horizontal plain and a microfin tube. Experimental apparatus was composed of 3 main parts: a refrigerant loop, a water loop and a water-glycol loop. The test section in th refrigerant loop was made of a copper tube of 9.52 mm outer diameter and 1 m length for both tubes. The refrigerant was heated by passing hot water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of $5^{\circ}C$ with mass fluxes of 100~300 kg/$m^2$s. Test results showed that at similar mass flux the flow boiling HTCs of R134a were similar to those of R22 for both plain and microfin tube. HTCs of R407C were similar to those of R22 for a plain tube but lower than those of R2 by 25~48% for a microfin tube. And HTCs of R410A were higher than those of R2 by 20~63% for a plain tube and were similar to those of R22 for a microfin tube. In general, HTCs of a microfin tube were 1.8~5.7 times higher than those of a plain tube.

  • PDF