• Title/Summary/Keyword: loop bandwidth

Search Result 322, Processing Time 0.028 seconds

Design and Implementation of a Robust Predictive Control Scheme for Active Power Filters

  • Han, Yang;Xu, Lin
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.751-758
    • /
    • 2011
  • This paper presents an effective robust predictive control scheme for the active power filter (APF) using a smith-predictor based current regulator, which show superior features when compared to proportional-integral (PI) controllers in terms of an enhanced closed-loop bandwidth and an improved current tracking accuracy. A moving average filter (MAF) is implemented using a field programmable gate array (FPGA) for signal pre-processing to eliminate the switching ripple contamination. An adaptive linear neural network (ADALINE) is used for individual harmonic estimation to achieve selective compensation purpose. The effectiveness and validity of the devised control algorithm are confirmed by extensive simulation and experimental results.

Control of the Z-Source Inverter using Average Model (평균 모델을 이용한 Z-소스 인버터의 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.290-296
    • /
    • 2014
  • This paper presents a design strategy for the control of the Z-source inverter (ZSI). For the Z-network capacitor voltage control, the average current model is derived to describe the dynamics of the voltage control and the controller outputs the average current command for the capacitor. Z-network inductor current reference is derived from the average current model of the Z-network capacitor. The inner current control loop outputs the average voltage command for the Z-network inductor and the shoot-through duty ratio of the ZSI is calculated from the output using the average voltage model of the Z-network inductor. The gain values of the current and voltage controllers are directly obtained by the Z-network parameters and desired bandwidth of each controller without a gain tuning process.

Features of the electric and magnetic fields produced by lightning discharges (뇌방전에 의해 발생된 전장 및 자장의 특성)

  • Lee, B.H.;Lee, W.C.;Baek, Y.H.;Cho, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2135-2137
    • /
    • 2005
  • This paper describes the features of electric and magnetic fields produced by lightning discharges. The measuring system consists of fast electric field sensor, crossed-loop magnetic field sensors, signal processing circuit, A/D converter and data acquisition equipment with a 12bit resolution and 10[MS/s] sampling rate. The frequency bandwidth and responsitivity of the electric field measuring system were 40[Hz]${\sim}$2.6 [MHz] and 2.08 (V/m/mV) and those of the magnetic field measuring system were 400[Hz]${\sim}$1[MHz] and 2.78[nT/mV], respectively. The electric and magnetic fields produced by lightning discharges were observed, and the features and parameters of the waveforms were analyzed.

  • PDF

A Design of X band Frequency Hopping Synthesizer using DDS Spurious Reduction Method (DDS 불요파 제거 알고리즘을 이용한 X 대역 주파수 도약 합성기 설계)

  • Kwon, Kun-Sup
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.775-784
    • /
    • 2010
  • In this paper we propose a design method of X band frequency hopping synthesizer in terms of phase noise and settling time with DDS driven PLL architecture, which has the advantages of high frequency resolution, fast settling time and small size. In addition, a noble method is proposed to remove the synthesizer output spurious signals due to superposition effect of DDS. The spurious signal which depend on its normalized frequency of DDS, can be dominant if they occur within the PLL loop bandwidth. We verify that the sources of that spurious signals are quasi-amplitude modulation and superposition effect, and suggest that such signals can be eliminated by intentionally creating frequency errors in the developed synthesizer.

Option of EDFAs for WDM Long-Haul Transmission Systems Gain Flattening With or Without a Gain Equalizer

  • Chung, Hee-Sang;Choi, Hyun-Beom;Lee, Mun-Seob;Lee, Dong-Han;Ahn, Seong-Joon;Choi, Bong-Su;Moon, Hyung-Myung;Lee, Kyu-Haeng
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.14-18
    • /
    • 2000
  • We have investigated gain flattening of EDFA systems with or without a gain equalizer for WDM long-haul transmission using a re-circulating EDFA loop. Without a gain equalizer, gain variation as small as 2.9 dB was achieved over the 10-nm band of a 100 cascaded EDFA system by the inversion principle. With a gain equalizer based on all-fiber acousto-optic tunable filters, two different config-urations of EDFAs were tested. For a single-stage EDFA scheme, the 21-nm band has shown 3.8 dB of gain variation at 17.4 ∼ 20.3 dB of OSNRs after the 100the stage of EDFAs. For a dual-stage EDFA scheme, a wider bandwidth of 34 nm has shown 3.6-dB variation after 40 cascaded EDFAs.

A Temperature- and Supply-Insensitive 1Gb/s CMOS Open-Drain Output Driver for High-Bandwidth DRAMs (High-Bandwidth DRAM용 온도 및 전원 전압에 둔감한 1Gb/s CMOS Open-Drain 출력 구동 회로)

  • Kim, Young-Hee;Sohn, Young-Soo;Park, Hong-Jung;Wee, Jae-Kyung;Choi, Jin-Hyeok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.54-61
    • /
    • 2001
  • A fully on-chip open-drain CMOS output driver was designed for high bandwidth DRAMs, such that its output voltage swing was insensitive to the variations of temperature and supply voltage. An auto refresh signal was used to update the contents of the current control register, which determined the transistors to be turned-on among the six binary-weighted transistors of an output driver. Because the auto refresh signal is available in DRAM chips, the output driver of this work does not require any external signals to update the current control register. During the time interval while the update is in progress, a negative feedback loop is formed to maintain the low level output voltage ($V_OL$) to be equal to the reference voltage ($V_{OL.ref}$) which is generated by a low-voltage bandgap reference circuit. Test results showed the successful operation at the data rate up to 1Gb/s. The worst-case variations of $V_{OL.ref}$ and $V_OL$ of the proposed output driver were measured to be 2.5% and 7.5% respectively within a temperature range of $20^{\circ}C$ to $90^{\circ}C$ and a supply voltage range of 2.25V to 2.75V, while the worst-case variation of $V_OL$ of the conventional output driver was measured to be 24% at the same temperature and supply voltage ranges.

  • PDF

Design of a Internal Loop Antenna for Multi-band Mobile Handset Applications (다중 대역 이동 통신 단말기용 내장형 루프 안테나 설계)

  • Lee Young-Joong;Lee Jin-Sung;Jung Byungwoon;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.917-925
    • /
    • 2005
  • In this paper, the quad-band antenna for mobile handsets is proposed and developed. The operating frequency bands include GSM(880 MHz${\~}$960 MHz), GPS(1,575 MHz$\pm$10 MHz), DCS(1,710 MHz${\~}$l,880MHz), and PCS(1,850 MHz${\~}$l,990 MHz). The proposed antenna consists of a feed line, a shorting post, and a radiating element of the feed loop. The multi-band operation is achieved by using the fundamental and higher resonant modes of the radiating element. Based on analysis of the current distribution on the radiator, the resonant frequency of each mode can be adjusted by adding the different sizes of slots on the radiator. The radiator of the feed loop is designed to be symmetrical so that the energy is symmetrically distributed on the radiator, which results in omni-directional radiation pattern. The ground plane under the radiator is removed in order to improve the bandwidth. The measured impedance bandwidths are $10.1\%$ in GSM band(VSWR<2.5), $26.8\%$ in GPS band, and DCS/US-PCS bands(VSWR<2.5), respectively. The maximum gains on the H-plane of the fabricated antenna are measured about -0.37 dBi${\~}$2.55 dBi for all operating frequency bands.

Application of Adaptive Loop Filter for NRT-Based Stereoscopic Video Coding (비실시간 기반 스테레오스코픽 비디오 부호화를 위한 적응루프필터 적용기법)

  • Lee, Byung-Tak;Lee, BongHo;Choi, Haechul;Kim, Jin-Soo;Yun, Kugjin;Cheong, Won-Sik;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.261-270
    • /
    • 2013
  • A stereoscopic 3D video service is able to provide a 3D video service while keeping backward compatibility with the existing 2D video service. In the terrestrial digital television (DTV) system, a stereoscopic video codec is required to have high coding efficiency in order to provide a 3D video service in the same channel capacity. A hybrid codec consisting of MPEG-2 for base video and H.264/AVC or HEVC for 3D auxiliary video is considered. Furthermore, Non-Real-Time (NRT) delivery of stereoscopic video is also considered as a service scenario for 3DTV services to overcome the limited bandwidth. In this paper, we propose a stereoscopic video coding scheme using adaptive loop filter (ALF) which had been considered in HEVC as a pre-/post-filter for enhancing coding efficiency in NRT-based 3DTV services. In order to apply ALF as a post-filter to the reconstructed additional view coded by H.264/AVC, we devise a method in which ALF is adaptively applied based on a structure determined by using macroblock (MB) coding information such as MB mode type and reference index instead of coding unit (CU) structure on which ALF is applied in the HEVC. Experimental results shows that the proposed stereoscopic video coding scheme applying ALF obtains up to 24.9% gain of bit saving.

Design and SAR Analysis of Broadband Monopole Antenna Using Loop and T-Shaped Patches (사각 루프와 T자형 패치를 결합한 광대역 평면형 모노폴 안테나 설계 및 SAR 분석)

  • Jang, Ju-Dong;Lee, Seungwoo;Kim, Nam;Choi, Dong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, a broadband planar monopole antenna for multi-band services is proposed. The physical size of the proposed antenna is miniaturized by folding a rectangular loop. And a resonance point in the 3.9 GHz band is reduced by a coupling phenomenon with the central part of the T-shaped patch and the folded rectangular loop. In addition, the T-shaped patch is inserted to the rectangular shaped monopole antenna due to deriving the broadband frequency characteristics. The frequency characteristic is optimized by adjusting the gap and length of the folded rectangular loops and a transverse diameter of the T-shaped patch. The antenna dimensions including the ground plane are $40{\times}60{\times}1.6mm^3$. It is fabricated on the FR-4 substrate(${\epsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. In the measured result, the bandwidth corresponding to the VSWR of 2:1 is 162 MHz(815~977 MHz) and 2,530 MHz(1.43~3.96 GHz). For analyzing the human effect by the proposed antenna, 1 g and 10 g averaged SARs are simulated and measured. As the simulated results, 1 g-averaged SAR is 1.044 W/kg, and 10 g-averaged SAR is 0.718 W/kg. This result are satisfied by the SAR guidelines which are 1.6 W/kg(1 g-averaged) and 2.0 W/kg(10 g-averaged).

Advanced Synchronous Reference Frame Controller for three-Phase UPS Powering Unbalanced and Nonlinear Loads (3상 무정전 전원장치에 적합한 새로운 구조의 동기좌표계 전압제어기)

  • Hyun Dong-Seok;Kim Kyung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.508-517
    • /
    • 2005
  • This paper describes a high performance voltage controller for 3-phase 4-wire UPS (Uninterruptible Power Supply) system, and proposes a new scheme of synchronous reference frame controller in order to compensate for the voltage distortions due to unbalanced and nonlinear loads. Proposed scheme can eliminate the negative sequence voltage component due to unbalanced loads and also reduce the harmonic voltage component due to non-linear loads, even when the bandwidth of voltage control loop is a very low. In order to compensate for the effects of unbalanced loads, the synchronous reference frame controller with the positive and negative sequence computation block is proposed, and the synchronous frame controller with a bandpass filter is proposed to compensate for the selected harmonic frequency of output voltage. The effectiveness of the proposed scheme has been investigated and verified through computer simulations and experiments by a 30kVA UPS.