• Title/Summary/Keyword: longitudinal tunnel

Search Result 212, Processing Time 0.03 seconds

Study on the Ways to Improve Deep Underground Road Facilities and Operation Based on the Cases of Longitudinal Tunnel (장대터널의 사례에 기반한 대심도 지하도로 교통시설 및 운영 개선방안)

  • Choi, Jong Chul;Lim, Joon Beom;Hong, Ji yeon;Lee, Sung Yeol
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.122-131
    • /
    • 2015
  • Recently, starting with the deep underground road construction plan in Seobu Expressway, Korea, there area many studies on deep underground roads to be newly built. However, there is an extreme lack of safety standards, which does not consider traffic conditions and road driving characteristics. Therefore, this study reviewed safety elements to reflect in the deep underground road planning by analyzing driving stability of longitudinal tunnels with road environments, which resemble deep underground roads. For comprehensive analysis, the characteristics and causes of the accidents that have occurred in seven longitudinal tunnels with a length of 2km or over in Gangwon area, were collected. Specifically, geometric structures and facilities of each tunnel were investigated. Also, the present state of facility installation and the changes in driving speed of vehicles passing through each tunnel were observed to analyze the causes for the traffic accidents in each tunnel and accident reduction alternatives. It was revealed that the most frequent accidents in the tunnels resulted from the changes of traffic flow due to the abrupt speed reduction of forward vehicles, or the failure in speed control of following vehicles during the traffic congestion situation. Moreover, installing facilities such as plane and longitudinal curves, median strips and marginal strips seem to induce consistent driving speed. These results mean that for accident prevention, speed management must be preceded and there is a need to develop and introduce safety facilities actively to control the driving flow of forward and following vehicles.

Fire Simulation Study and Tunnel Ventilation of Requirement in the Longitudinal Tunnel. (In Yimgo-4th Tunnel) (종류식 터널내 소요 환기량에 의한 터널환기 및 화재 시뮬레이션 연구 ( 임고 4 터널 ))

  • Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1378-1385
    • /
    • 2008
  • This study is aimed to analyze the flow patterns and thermal characteristics by computer simulation under the variations of fire strength for Daegu-Pahang Yimgo-4th tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Though the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

Behavior of a tunnel face reinforced with longitudinal pipes - laboratory investigation (실내실험에 의한 수평보강재로 보강된 터널막장의 거동)

  • Yoo, Chung-Sik;Yang, Ki-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.91-100
    • /
    • 2002
  • This paper presents the results of laboratory investigation on the deformation behavior of tunnel face reinforced with longitudinal pipes. A series of reduced-scale model tests was carried out to investigate the effect of reinforcement layout on the tunnel face axial displacement as well as the surface settlement. Among other things, the results of the model tests indicate that the axial displacement of tunnel face as well as the ground surface settlement can significantly be reduced by pre-reinforcing the tunnel face with longitudinal pipes, suggesting that the pre-reinforcing technique may effectively be used as a positive ground control method in the urban environments. Also illustrated is that the reinforcing effect is significantly influenced by the reinforcement layout. The implications of the findings from this study are discussed in a great detail.

  • PDF

A Study on the Traffic Accident Characteristics Analysis in Expressway Longitudinal Tunnel using a Logit Model (로짓모형을 이용한 고속도로 장대터널 교통사고 특성분석에 관한 연구)

  • Seo, Im-Ki;Park, Je-Jin;AhnNam, Byung-Ho;Lee, Jun-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.549-556
    • /
    • 2012
  • Longitudinal tunnels are defined as tunnels with length of over 1km. Because of Korea's topographical conditions and as safety measures for linear design, many tunnels are inevitably being constructed in Korea. The number of longitudinal tunnels constructed on expressways amounted to 104 as of the end of 2010 with a total length of 192km. Given the increasing demand for tunnels and the increasing length of tunnels, a safety evaluation of longitudinal tunnels needs to be conducted. As such, this study selected design elements, transportation environment and delineation system as elements to check and tried to determine factors influencing road crashes. For this, tunnels have been classified based on history of crashes; ones with crashes and ones without crashes and statistically meaningful explanatory variables were selected. By using these variables, a logit model was development in order to better grasp the factors that directly and strongly influence crashes. The result, related to crashes as well as the analysis were utility tunnel interior materials of driving lane and passing lane, which are related to driver's visibility, lateral width widening to consolidate space in a tunnel, and annual average daily traffic (AADT) per lane. These results may be used in the future as analysis indicators when drawing up plans to prevent crashes in longitudinal tunnels.

A Study of Thermal and Air Distribution Forcast by Firing in the Longitudinal Tunnel (In Yimgo - 4th Tunnel) (종류식 터널내에서 화재에 의한 열 및 기류분포 예측에 관한 연구)

  • Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1209-1212
    • /
    • 2006
  • This study is aimed to analyze the floe patterns and thermal characteristics by computer simulation under the variations of fire strength for Daegu-Pahang Yimgo-4th tunnel, from which flow and heat distributions are predicted In the longitudinal tunnel. Though the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

An Experimental Study on the Effect of Longitudinal Ventilation on the Variation of Burning Rate in Tunnel Fires (터널 화재시 종류식 환기가 연소율 변화에 미치는 영향에 관한 실험적 연구)

  • Yang Seung Shin;Kim Sung Chan;Ryou Hong Sun
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.55-60
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiments using Froude scaling were conducted to investigate the effect of longitudinal ventilation on the variation of burning rate in tunnel fires. The methanol square pool fires with heat release rate ranging from 3.57 kW to 10.95 kW were used. The burning rate of fuel was obtained by measured mass using load cell and temperature distribution were measured by K-type theomocouples in order to investigate smoke movement. The wind tunnel was connected with one side of the tested tunnel, and logitudinal ventilation velocity in the tested tunnel was controlled by power of the wind tunnel. In methanol fire case, the increase in ventilation velocity decreased the turning rate due to the direct cooling of fire plume. For the same dimensionless velocity(V), homing rate decreased as the size of pool fire increased.

A Study on Fire ventilation design of road tunnel (도로터널에서의 화재환기 설계에 관한 연구)

  • Kim, Myung-Bae;Choi, Byung-Il;Choi, Jun-Seok;Han, Yong-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • The several assumptions and design parameters to determine the ventilation rate in tunnel ventilation system were examined. In longitudinal ventilating tunnel, the ventilation rate has been determined by the critical velocity above which the smoke propagation to the upstream of ventilating air is prevented. Based upon the examination of assumptions and experimental results, we suggested the improved method to determine the critical velocity. In transverse ventilating tunnel, we found that the ventilation rate has been determined in accordance with the custom rather than fire-smoke dynamics such as the critical velocity in the longitudinal ventilating tunnel. It is because the ventilation rate in the transverse ventilation system has been determined by considering only the ventilation of contaminant by vehicle. To improve the ventilation design parameters based upon the fire-smoke dynamics, we conducted model tunnel fire experiments. From the experimental results, smoke propagating distance and smoke filling were suggested as the design parameter to determine the ventilation rate in transverse ventilating tunnel. And tunnels in Europe designed by the custom is found to have the dangerous nature in view of fire safety.

  • PDF

Behavior of the ground in rectangularly crossed area due to tunnel excavation under the existing tunnel (I) (기존터널에 근접한 직각교차 하부터널의 굴착에 따른 교차부지반의 거동 (I))

  • Kim, Dong-Gab;Kim, Seung-Hyun;Hong, Suk-Bong;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.3-12
    • /
    • 2005
  • The behaviors of the ground in crossed zone and the existing upper tunnel in shallow cover due to the excavation of new lower tunnel Rectangularly crossed to that was studied. Model tests were performed in the large scale test pit, the size was '$4.0m(width){\times}3.8m(height){\times}4.1m(length)$'. Test ground was constructed uniformly by sand in middle density. Results of the model tests show that earth pressure and settlement of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. Upper tunnel blocks stress flow due to the longitudinal arching effect by excavation of lower tunnel.

  • PDF

An investigation on tunnel deformation behavior of expressway tunnels

  • Chen, Shong-Loong;Lee, Shen-Chung
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.215-226
    • /
    • 2020
  • The magnitude and distribution of tunnel deformation were widely discussed topics in tunnel engineering. In this paper, a three-dimensional (3D) finite element program was used for the analysis of various horseshoe-shaped opening expressway tunnels under different geologies. Two rock material models - Mohr-Coulomb and Hoek-Brown were executed in the process of analyses; and the results show that the magnitude and distribution of tunnel deformation were close by these two models. The tunnel deformation behaviors were relevant to many factors such as cross-sections and geological conditions; but the geology was the major factor to the normalized longitudinal deformation profile (LDP). If the time-dependent factors were neglected, the maximum displacements were located at the distance of 3 to 4 tunnel diameters behind the excavation face. The ratios of displacement at the excavation face to the maximum displacement were around 1/3 to 1/2. In general, the weaker the rock mass, the larger the ratio. The displacements in front of the excavation face were decreased with the increasement of distance. At the distance of 1.0 to 1.5 tunnel diameter, the displacements were reduced to one-tenth of the maximum displacement.

The Simulator Study on Driving Safety while Driving through the Longitudinal Tunnel (차량시뮬레이터를 이용한 장대터널 주행안전성 연구)

  • Ryu, Jun-Beom;Sihn, Yong-Kyun;Park, Sung-Jin;Han, Ju-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.149-156
    • /
    • 2011
  • Considerable evaluation is needed to design a new longitudinal tunnel in advance because it damaged drivers' driving safety and heightened the possibility of traffic accidents with its physical characteristics. Specifically, considering traffic psychological and ergonomic factors was very important to prevent the difficulty of maintaining safe speed, the increase of the drowsy driving, the fatality of traffic accidents, and subjective feelings such as anxiety while driving a car through the tunnel, from design to construction. This study dealt with driving safety evaluation of an original road alignment design for the longitudinal tunnel (length: above 10km) with a driving simulator, and helped us to improve an original road alignment design and make an alternative road alignment design with presenting risky districts. The results of experiment showed that inflection points were revealed more risky districts, because they impaired driving safety and elevated driver workload while driving a car through around the inflection points of two-way route. Finally, the limitations and implications of this study were discussed.