• Title/Summary/Keyword: longitudinal tunnel

Search Result 213, Processing Time 0.022 seconds

Deformation behavior of tunnels crossing weak zone during excavation - numerical investigation (연약대를 통과하는 터널의 시공중 변위거동 - 수치해석 연구)

  • Yoo, Chungsik;Park, Jung-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.373-386
    • /
    • 2014
  • This paper concerns the deformation behavior of tunnels crossing weak zone during excavation. A three dimensional finite element model was adopted in order to conduct a parametric study on the orientation of weaj zone in terms of strike and dip angle relative to the tunnel longitudinal axis. The results of the analyses were then analyzed so that the tunnel displacements in terms of the ratios between the crown settlement and springline displacement can be related to the orientation of the weak zone. The results indicate that the displacement ratios between the tunnel crown and springline tend to quantitatively change when a weak zone exists near or ahead of the tunnel suggesting that the displacement ratios can be effectively used to predict the weak zone during tunnelling. Practical implications of the findings are discussed.

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei;Xu Shuo;Wang Qi;Xin Zhong Xin;Wei Hua Yong;Ma Feng Lin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.117-126
    • /
    • 2024
  • There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

A study on the design of tunnel lining insulation based on measurement of temperature in tunnel (터널 온도계측을 통한 라이닝 단열 설계에 관한 연구)

  • Kim, Dea-Young;Lee, Hong-Sung;Sim, Bo-Kyoung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.319-345
    • /
    • 2011
  • In case of tunnels in cold regions, a freeze of groundwater around tunnel may act as a barrier of tunnel drainage in winter, or may cause the inner extrusion of lining. In spite of that, a design of insulation for preventing the frost damage of tunnel lining has not been introduced in Korea, while foreign countries such as Norway and so on have a standard on insulation. In this study, a few freezing cases of road tunnels have been reviewed, and the results show that the freezing protection is necessary. In order to characterize the thermal distribution in the tunnel, following measurements have been performed at Hwa-ak tunnel; the temperature distribution by longitudinal lengths, the internal temperature of lining and the temperature distribution of the ground under pavement. From these measurements, the characteristics of the tunnel's internal temperature distribution due to temperature change in the air has been analyzed. Based on the measurement results on the temperature distribution at Hwa-ak tunnel, thermal flow tests on the rock specimen with and without insulation have been performed in the artificial climate chamber to investigate the performance of the insulation. Also, a number of 3D numerical analyses have been performed to propose appropriate insulation and insulation thicknesses for different conditions, which could prevent the frost damage of tunnel lining. As a result of the numerical analysis, air freezing index of 291$^{\circ}C{\cdot}$ Hr has been suggested as the threshold value for freezing criteria of groundwater behind the tunnel lining.

Experimental Study on the Measurement Method of Heat Transfer Coefficients Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 열전달 계수 측정법에 관한 실험적 연구)

  • 홍철현;정준화;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.581-588
    • /
    • 2003
  • Heat transfer characteristics of a pair of longitudinal vortices using a transient liquid crystal technique are studied experimentally. In order to control the strength of longitudinal vortices, angle of attack of the vortex generators is $20^{\circ}$and the length of space from the centerline the vortex generations is 25mm apart. The heat transfer measurements using a transfer coefficients. The following conclusions are obtained from the present experiment. When any vortex generators are not set up in wind tunnel test, heat transfer rate is low respectively. However, with the vortex generators of rectangular winglet, the heat transfer on the local surface can be enhanced.

Quantitative preliminary hazard level simulation for tunnel design based on the KICT tunnel collapse hazard index (KTH-index) (터널 붕괴 위험도 지수(KTH-index)에 기반한 터널 설계안의 정량적 사전 위험도 시뮬레이션)

  • Shin, Hyu-Soung;Kwon, Young-Cheul;Kim, Dong-Gyou;Bae, Gyu-Jin;Lee, Hong-Gyu;Shin, Young-Wan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.373-385
    • /
    • 2009
  • A new indexing methodology so called KTH-index was developed to quantitatively evaluate a potential level for tunnel collapse hazard, which has been successfully applied to tunnel construction sites to date. In this study, an attempt is made to apply this methodology for validating an outcome of tunnel design by checking the variation of KTH-index along longitudinal tunnel section. In this KTH-index simulation, it is the most important to determine the input factors reasonably. The design factor and construction condition are set up based on the designed outcome. Uncertain ground conditions are arranged based on borehole test and electro-resistivity survey data. Two scenarios for ground conditions, best and worst scenarios, are set up. From this simulation, it is shown that this methodology could be successfully applied for providing quantitative validity of a tunnel design and also potential hazard factors which should be carefully monitored in construction stage. The hazard factors would affect sensitively the hazard level of the tunnel site under consideration.

The application of neural network system to the prediction of pollutant concentration in the road tunnel

  • Lee, Duck-June;Yoo, Yong-Ho;Kim, Jin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.252-254
    • /
    • 2003
  • In this study, it was purposed to develop the new method for the prediction of pollutant concentration in road tunnels. The new method was the use of artificial neural network with the back-propagation algorithm which can model the non-linear system of tunnel environment. This network system was separated into two parts as the visibility and the CO concentration. For this study, data was collected from two highway road tunnels on Yeongdong Expressway. The tunnels have two lanes with one-way direction and adopt the longitudinal ventilation system. The actually measured data from the tunnels was used to develop the neural network system for the prediction of pollutant concentration. The output results from the newly developed neural network system were analysed and compared with the calculated values by PIARC method. Results showed that the prediction accuracy by the neural network system was approximately five times better than the one by PIARC method. ill addition, the system predicted much more accurately at the situation where the drivers have to be stayed for a while in tunnels caused by the low velocity of vehicles.

  • PDF

Experimental Study on Viscous Flows over Ship Sterns by Using the Hot-wire Anemometer in the Wind-tunnel (풍동에서 열선유속계를 이용한 선미주위 점성유동의 실험적 연구)

  • S.H.,Kang;J.Y.,Yoo;B.Y.,Shon;S.B.,Lee;S.J.,Baik
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.3
    • /
    • pp.13-18
    • /
    • 1988
  • Three-dimensional turbulent flows over ship sterns are measured by using the hot-wire anemometer and static holes in the wind tunnel. A conventional stern and a barge-type stern are adopted for the present study. Three components of mean velocities, pressures on the hull and six components of Reynolds stresses are measured. Longitudinal velocity contours are more parallel to the hull surface and weak bilge vortices appear on the barges type stern rather than the conventional stern. Those viscous flow patterns may have close relations to improvements of the resistance and propulsion performance, which have been verified in the towing tests. Measured data files are valuable for the ensuing numerical studies.

  • PDF

Analysis of External Peak Pressure Coefficients for Cladding in Elliptical Retractable Dome Roof by Wind Tunnel Test (풍동 실험을 통한 타원형 개폐식 돔 지붕의 외장재용 풍압 계수 분석)

  • Lee, Jong-Ho;Kim, Yong-Chul;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • This study investigates the wind pressure characteristics of elliptical plan retractable dome roof. Wind tunnel experiments were performed on spherical dome roofs with varying wall height-span ratios (0.1~0.5) and opening ratios (0%, 10%, 30% and 50%), similar to previous studies of cirular dome roofs. In previous study, wind pressure coefficients for open dome roofs have been proposed since there are no wind load criteria for open roofs. However, in the case of Eeliptical plan retractable dome roof, the wind pressure coefficient may be largely different due to the presence of the longitudinal direction and transverse direction. The analysis results leads to the exceeding of maximum and minimum wind pressure coefficients KBC2016 code.

Dynamic and structural responses of a submerged floating tunnel under extreme wave conditions

  • Jin, Chungkuk;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.413-433
    • /
    • 2017
  • The dynamic and structural responses of a 1000-m long circular submerged floating tunnel (SFT) with both ends fixed under survival irregular-wave excitations are investigated. The floater-mooring nonlinear and elastic coupled dynamics are modeled by a time-domain numerical simulation program, OrcaFlex. Two configurations of mooring lines i.e., vertical mooring (VM) and inclined mooring (IM), and four different buoyancy-weight ratios (BWRs) are selected to compare their global performances. The result of modal analysis is included to investigate the role of the respective natural frequencies and elastic modes. The effects of various submergence depths are also checked. The envelopes of the maximum/minimum horizontal and vertical responses, accelerations, mooring tensions, and shear forces/bending moments of the entire SFT along the longitudinal direction are obtained. In addition, at the mid-section, the time series and the corresponding spectra of those parameters are also presented and analyzed. The pros and cons of the two mooring shapes and high or low BWR values are systematically analyzed and discussed. It is demonstrated that the time-domain numerical simulation of the real system including nonlinear hydro-elastic dynamics coupled with nonlinear mooring dynamics is a good method to determine various design parameters.

A Study tor 2-Dimensional Analysis Technique for 3-Dimensional Ground Behaviour Due to Tunneling (터널 굴진시의 3차원 지반거동의 2차원적 해석법 고찰)

  • 김교원;이현범
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.111-118
    • /
    • 1996
  • In general, a three dimensional ground behaviour during tunneling is simulated by using two dimensional analysis programs in consideration of a certain ratio of stress or strain distribution to take into account the effect of construction stage by a tunnel face advance. A series of trree dimensional analyses was conducted to deduce a normalized displacement (surface or crown settlement) curve in longitudinal direction, of which curve is reflecting an effect of a tunnel advance under a various condition. And, by using try and error technique, two dimensional analyses were carried out to determine an optimum stress distribution ratio for a settiement curve coincided with the curve obtained by three dimensional analyses. Finally, monitored results from a subway tunnel were compared with two dimensional analysis results for varification of the deduced stress distribution ratio as well as the two dimensional analysis program employed in this study.

  • PDF