• 제목/요약/키워드: longitudinal stiffness

검색결과 307건 처리시간 0.028초

볼스크류의 축-비틀림 복합강성을 고려한 이송계 모델링 (Modeling of Feed Drive System Considering Combined Stiffness with Longitudinal And Twist Direction)

  • 이찬홍;박천홍;노승국;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2002
  • In machine tools, the stiffness of feed drive system is very important for high speed and accurate operation. The ball screw driven feed system has small friction, so the longitudinal and twist stiffness are connected directly and affected by each other. As the longitudinal and twist stiffness are participated in total stiffness of feeding system by about ratio of 4:1, the combined stiffness is necessary to compute when stiffness of feed system is estimated. In this paper, calculation of this combined stiffness is derived and applied for an actual ballscrew fled drive system. The static stiffness and 1 st natural frequency of the feed system is measured, and it is proved the difference between estimation and experiment result is less than 6%.

  • PDF

Study on midtower longitudinal stiffness of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Hang;Xu, Mingsai
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.641-649
    • /
    • 2020
  • The determination of midtower longitudinal stiffness has become an essential component in the preliminary design of multi-tower suspension bridges. For a specific multi-tower suspension bridge, the midtower longitudinal stiffness must be controlled within a certain range to meet the requirements of sliding resistance coefficient and deflection-to-span ratio. This study presents a numerical method to divide different types of midtower and determine rational range of longitudinal stiffness for rigid midtower. In this method, influence curves of midtower longitudinal stiffness on sliding resistance coefficient and maximum vertical deflection-to-span ratio are first obtained from the finite element analysis. Then, different types of midtower are divided based on the regression analysis of influence curves. Finally, rational range for longitudinal stiffness of rigid midtower is derived. The Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is selected as the subject of this study. This will be the first three-tower four-span suspension bridge with steel truss girders and concrete midtower in the world. The proposed method provides an effective and feasible tool for engineers to design midtower of multi-tower suspension bridges.

철근콘크리트 원형단면 교각의 유효강성 (Effective Stiffness of Circular Reinforced Bridge Columns)

  • 배성용;김준범;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.833-838
    • /
    • 2001
  • The objectives of this study are to investigate effective stiffness of circular reinforced bridge columns and to provide reasonable effective stiffness equations for seismic design to the current Korean Bridge Design Standard. The material nonlinear analysis was conducted for 5184 columns of which variables were the concrete compressive stress, the steel yielding stress, the longitudinal steel location parameter, the longitudinal steel ratio, the axial load level, and the diameter of section. The current Korean Bridge Design Standard generally used the gross section stiffness because of unclear provision, it may be non-conservative because of being evaluated greater design seismic force and less design displacement than those of the abroad provision. Therefore, the proposed effective stiffness equations include three variables such as : the longitudinal steel location parameter, the longitudinal steel ratio, and the axial load ratio. Two equations of effective stiffness are proposed which may be used for earthquake force estimation and for earthquake displacement estimation, respectively.

  • PDF

고속철도 교량의 구조 시스템 변화를 고려한 교량상 장대레일의 응력 해석 (Analysis of Rail Stress on Diversity of Railway Bridge Sustem)

  • 강재윤;김병석;곽종원;진원종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3160-3165
    • /
    • 2011
  • The track and bridge interaction should be considered for the safety check of railway bridge design as the longitudinal forces transmitted to rail and bridge are changed by longitudinal stiffness of bridge system. The longitudinal stiffness of bridge structures is determined by the magnitude of the ballast resistance, the expansion length of superstructure, and longitudinal stiffness of substructure including pier and foundations. In this study, the main factors affect on the longitudinal rail forces are discussed and the computational parametric analysis of rail forces considering rail-bridge interactions. And the required range of stiffness of sub-structures and span length for the assurance of safety of CWR(continuous welded rail) track is suggested.

  • PDF

설계지진력 해석시의 철근콘크리트 사각단면교각의 항복유효강성 (Yielding Effective Stiffness of Rectangular RC Bridge Columns for Design Seismic Force)

  • 배성용;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.941-946
    • /
    • 2001
  • The objectives of this study are to investigate effective stiffness of Rectangular reinforced concrete bridge columns. It is reasonable to use yielding effective stiffness of columns in seismic bridge design, especially in case that plastic hinges form at the bridge columns. In this study, the material nonlinear analysis was conducted for 3, 240 column sections of which variables were the concrete compressive stress, the steel yielding stress, the longitudinal steel location parameter, the longitudinal steel ratio, the axial load level, and the diameter of section. Based on the analytical results, an effective stiffness including two variables(longitudinal steel ratio and axial load ratio) was proposed by regression analyses, and it is compared with test results and the proposed equation for yielding effective stiffness of circular bridge columns.

  • PDF

2경간 연속 철도교의 종방향 거동에 관한 연구 (A Study on the Longitudinal Behavior of 2-Span Continuous Railway Bridge)

  • 임정순;조재병;방윤석
    • 한국방재학회 논문집
    • /
    • 제1권1호
    • /
    • pp.81-90
    • /
    • 2001
  • 2경간 연속 철도교의 종방향 거동에 영향을 미치는 여러 인자들에 대해서 연구하였다. 그 인자들로는 교각 강성의 크기, 교각의 높이, 교각기초의 크기와 교각받침의 강성을 변화시켜 그에 따른 변화양상을 살펴보았다. 그 결과 고정단 교각에서의 여러 인자들의 변화에 따른 종방향 거동의 변화가 가동단 교각에서의 변화에 따른 영향보다 크다는 사실을 확인할 수 있었다. 또한, 받침강성을 변화시켜서 종방향 거동을 제어하는 것이 다른 인자들을 변화시키는 것보다 더 경제적이라 할 수 있다.

  • PDF

Stiffness modeling of RC columns reinforced with plain rebars

  • Ozcan, Okan
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.163-180
    • /
    • 2014
  • Inaccurate predictions of effective stiffness for reinforced concrete (RC) columns having plain (undeformed) longitudinal rebars may lead to unsafe performance assessment and strengthening of existing deficient frames. Currently utilized effective stiffness models cover RC columns reinforced with deformed longitudinal rebars. A database of 47 RC columns (33 columns had continuous rebars and the remaining had spliced reinforcement) that were longitudinally reinforced with plain rebars was compiled from literature. The existing effective stiffness equations were found to overestimate the effective stiffness of columns with plain rebars for all levels of axial loads. A new approach that considers the contributions of flexure, shear and bond slip to column deflections prior to yielding was proposed. The new effective stiffness formulations were simplified without loss of generality for columns with and without lap-spliced plain rebars. In addition, the existing stiffness models for the columns with deformed rebars were improved while taking poor bond characteristics of plain rebars into account.

A simplified analysis of super building structures with setback

  • Takabatake, Hideo;Ikarashi, Fumiya;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.43-64
    • /
    • 2011
  • One-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. The mechanical behavior of structures composed of distinct constituents of different stiffness such as coupled walls with opening is significantly governed by the local variation of stiffness. Furthermore, in structures with setback the distribution of the longitudinal stress behaves remarkable nonlinear behavior in the transverse-wise. So, the author proposed the two-dimensional rod theory as an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. This paper proposes how to deal with the two-dimensional rod theory for structures with setback. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures. The transverse-wise nonlinear distribution of the longitudinal stress due to the existence of setback is clarified to originate from the long distance from setback.

장대레일 철도 교량의 축력 영향인자 분석 (Influence Factors Affecting the Longitudinal Force of Continuous Welded Rail on Railroad Bridges)

  • 김경삼;한상윤;임남형;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.385-390
    • /
    • 2003
  • Recently, use of Continuous Welded rail(CWR) is increased for structural, economical reason but new problem is caused accordingly and phenomenon that give threat in traveling by ship stability of train is led. According as rail is prolonged, excessive relative displacement and longitudinal force can happen to rail by temperature change and external force. Specially, buckling or fracture of rail can happen in railroad bridges because relative displacement by bridge and properties of matter difference between rail grows and additional axial force happens to rail by behavior of bridge. According to several study, longitudinal force of rail in bridge is influenced with ballast resistance, elongation length, boundary condition, stiffness of framework. Non-linear behavior of ballast acts by the most important factor in interaction between rail and bridge. Therefore, must consider stiffness of bridge construction with non-linear characteristic of ballast and stiffness of base for accuracy with longitudinal force calculation and analyze. In this study, perform material non-linear analysis for longitudinal force of CWR and three dimensional buckling analysis to decide buckling force.

  • PDF

철근콘크리트 기둥의 성능기반설계를 위한 주철근비 (Longitudinal Reinforcement Ratio for Performance-based Design of Reinforced Concrete Columns)

  • 김창수;박홍근
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.187-197
    • /
    • 2010
  • 본 연구에서는 성능기반설계를 위한 기둥의 주철근비에 대하여 연구하였다. 일률적인 현행 설계기준과 달리, 다양한 기둥의 설계변수를 고려하여 기둥의 주철근을 정의하였다. 기둥의 최소철근비는 다음의 2 가지 사항을 고려하여 평가하였다; 1) 사용상태에서 콘크리트의 장기변형에 의한 철근의 조기항복 방지; 2) 내진설계시 기둥의 연성능력을 확보하기 위해 균열모멘트 이상의 극한휨강도 확보. 배근상태와 하중조건에 따른 기둥의 유효강성도 강도설계시 추가적으로 고려하였으며, 3 가지 사항을 고려한 주철근비 결정방법을 제안하였다. 제안된 방법은 설계예제에 적용되었다.