• 제목/요약/키워드: longitudinal shear strength

검색결과 216건 처리시간 0.023초

이중합성 강박스거더에서 전단연결재에 의해 보강된 압축플랜지의 극한거동에 관한 연구 (Ultimate Behavior of Compression Flange Stiffened by Shear Stud on Double Composite Steel Box Girder)

  • 이두성;이성철;서석구
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.457-463
    • /
    • 2008
  • 종방향 보강재는 압축플랜지를 단순지지함으로써 국부좌굴강도를 증가시키는 역할을 수행한다. 최근 연구에 의하면, 종방향으로 적절한 간격을 두고 점지지 되었을 경우 그 선을 따라서 단순 지지된 경우와 동일한 좌굴강도를 보이는 것으로 밝혀졌다. 이 같은 연구결과로부터, 하부콘크리트에 부착된 전단연결재가 압축플랜지의 좌굴시 점지지 조건을 만족할 수 있다면 전단연결재가 단순지지의 역할도 수행할 수 있을 것이라는 예측이 가능하다. 이와 같은 사실이 입증이 된다면, 강박스거더 제작비에서 매우 큰 부분을 차지하는 종방향보강재를 생략할 수 있기 때문에 보다 경제적인 설계가 가능해 질 것이다. 본 연구에서는 하부압축플랜지에 종방향보강재를 대체할 전단연결재의 종방향 배치 시 최소간격 결정과 동시에 하부 콘크리트와 합성거동을 하기 위해 소요되는 전단연결재 소요 개수와 간격을 결정하기 위한 연구를 수행하였다.

부착강도가 철근 콘크리트 보의 전단강도에 대한 영향 (The effect of bond strength of longitudinal bars on shear strength of reinforced concrete beams)

  • 홍성걸;임우영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.51-52
    • /
    • 2010
  • 아치 작용과 트러스 작용의 관점에서 주근의 부착강도가 전단강도에 미치는 영향을 살펴본다. 부�T강도를 고려한 응력장으로 깊은 보와 얕은 보의 가능한 전단파괴의 종류를 구분할 수 있다. 또한 대각선 응력장의 기울기는 전단강도를 결정하는 응력전달 요소 중 2 개가 항복점에 도달할 ��의 균형점으로 해석할 수 있다.

  • PDF

전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구 (A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio)

  • 박종건
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

설계변수에 따른 철근콘크리트 보의 전단강도 변화에 대한 실험연구 (Experimental Study on Variation of Shear Strength of Reinforced Concrete Beams According to Design Parameters)

  • 오동현;최경규;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.279-282
    • /
    • 2005
  • Experimental study is performed to investigate the variation of shear strength of reinforced concrete beams according to design parameters. The major parameters are loading condition, shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, prestress and boundary rigidity.14 reinforced concrete beams without web reinforcement are tested under monotonic downward loading. The shear strength of the tested specimens were compared with the prediction by design code and Choi's method.

  • PDF

Analytical model for flexural and shear strength of normal and high-strength concrete beams

  • Campione, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.199-207
    • /
    • 2021
  • In the present paper, an analytical model is proposed to determine the flexural and shear strength of normal and high-strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on evaluation of the resistance contribution due to beam and arch actions including interaction with stirrups. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars, including the effect of stirrups and the crack spacing of R.C. beams, is considered. The compressive strength of the compressed arch is also verified by taking into account the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance including the presence of stirrups;- size effects. Finally, some of the more recent analytical expressions able to predict shear and flexural resistance of concrete beams are mentioned and a comparison is made with experimental data.

경량콘크리트 슬래브와 철골보의 합성보에서 쉬어 코넥터의 강도에 관한 연구 (A Study on Strength of Shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs)

  • 주기수;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.356-361
    • /
    • 1994
  • From the previous experimental test results, it has shown that shear that shear strength in lightweight concrete beams was about 85% on that in normal concrete beams. It is speculated that shear connectors in composite beams of steel and lightweight concrete associated with the longitudinal shear strength decrease more in strength than those in normal concrete. So this paper, as a study on strength of shear connectors in composite beams of steel and lightweight concrete slabs, has a purpose to compare the strength formula resulted from the push-out test of thirteen solid slab and four deck Plate slab with the established ones, and then to suggest a proper strength formula of the shear connectors. The established strength formula of the shear connectors is prescribed for $P_ps = 0.50A_s . \sqrt{f_C . E_C}$by AISC coed, but from the experimental test results the strength values of the shear connectors in lightweignt concrete slabs shows about 70% on those of the shear connectors in normal concrete slabs by AISC code. Therefore, as a strength formula this paper suggests to multiply the established strength formula by reduction factor$(\varphi=0.7)$.

  • PDF

구획배치에 따른 최소 전단력을 고려한 H-CSR 기반 중형 살물선 종강도 부재의 중량 절감 방안 연구 (On the Weight Reduction of Longitudinal Members of Mid-Sized Bulk Carrier Considering the Minimum Shear Force according to Compartment Arrangement based on H-CSR)

  • 나승수;송하철;정솔;박민철;배상돈
    • 대한조선학회논문집
    • /
    • 제54권4호
    • /
    • pp.352-359
    • /
    • 2017
  • Because the Energy Efficiency Design Index(EEDI) came into effect in 2013, it is necessary to develop a new technology to overcome $CO_2$ emission regulations. In structural design viewpoint, lots of researches are carried out to develop eco-friendly and high fuel efficiency ships by weight reduction. By using the automated compartment arrangement system and automated structural design algorithm which were developed by the authors, new researches are performing to combine the above two systems. However, the effect of weight reduction was not significant because structural designs by using these systems for the midship part was carried out only focused on the minimum still water bending moment. In this paper, at first, good compartment arrangements which give the minimum still water bending moment and(or) shear force were chosen by using the automated compartment system. And then, influence of shear force on weight reduction was investigated by using the automated structural design algorithm considering longitudinal strength, local strength and shear strength of longitudinal members in cargo holds. Conclusively, it is necessary to consider the minimum still water bending moment and shear force simultaneously to reduce the weight of mid-sized bulk carrier. Also, good compartment arrangement which gives much more weight reduction compared with existing ship was proposed.

신개발된 평데크플레이트(ACE-DECk)를 이용한 합성술래브의 전단거동에 관한 실험적 연구 (An Experimental Study on the Shear Behavior of Composite Slabs Using Newly Developed Flat Deck-Plate(ACE-DECK))

  • 허병욱;양명숙;배규웅;오상훈
    • 한국강구조학회 논문집
    • /
    • 제13권3호
    • /
    • pp.255-263
    • /
    • 2001
  • 구조용 데크플레이트를 사용한 합성슬래브의 파괴형식 중에서 수평전단파괴는 가장 일반적인 파괴형태로써, 본 논문에서는, 데크 춤 60mm인 신개발된 (ACE-DECK) 합성구조용 평데크플레이트를 개발하여 합성슬래브의 전단거동에 관한 실험적 연구를 수행하였다. 실험체는 데크의 형상, 두께 및 콘크리트의 토핑두께를 변수로 하여 총 22개의 실험체를 제작하여 전단부착성능 실험을 실시하였다. 실험결과, 데크의 두께 및 콘크리트 토핑두께에 따른 합성슬래브의 전단부착성능은 크게 영향이 없는 것으로 나타났고, 신형상(ACE-DECK)의 평데크플레이트는 전단부착응력이 $3.6kgf/cm^2$ 까지 나타나 기존의 평데크 형상에 비교하여 효과적인 전단부착성능을 발휘함을 알 수 있었다.

  • PDF

$CO_2$아크 스폿 용접법에 의한 조립보의 굽힘강도에 관한 연구 (A Study on the Bending Strength of a Built-up Beam Fabricated by the $CO_2$ Arc Spot Welding Method)

  • 한명수;한종만;이준열
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.143-153
    • /
    • 1997
  • In this study, bending test was performed on the real-scale, built-up beam test model fabricated by the $CO_2$ arc spot welding to evaluate the applicability of the welding method to the production of the stiffened plate in car-carrying ship. The built-up beam models which were fixed at both ends in longitudinal direction or simply supported to the rigid foundation, depending on the restraint condition of the corresponding car decks considered, were subjected to simulated design vehicle loads or concentrated point loads. During the test, the central deflection and the longitudinal bending stresses were measured from several points on the longitudinal flange face to predict the section properties of the built-up beams. The longitudinal bending stress on each spot weld were also measured to calculate the average horizontal shear force subjected to spot welds. Test results revealed that the shear strength of spot welds with their current weld nugget size and welding pitch was adequate enough to withstand the horizontal shear forces under the design vehicle loads. Although the built-up beam fabricated by the arc spot welding was a discontinuous beam, its mechanical behavior was well explained by the continuous beam theory using the effective breadth of plate. Based on test results, the criterion for the size of spot weld of which the average shear stress might meet the allowable stress requirement of AWS Code could be established.

  • PDF

Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams

  • El-Sayed, Ahmed K.;Shuraim, Ahmed B.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.513-525
    • /
    • 2016
  • The resistance-demand approach has emerged as an effective approach for determining the shear capacity of reinforced concrete beams. This approach is based on the fact that both the shear resistance and shear demand are correlated with flexural tensile strain from compatibility and equilibrium requirements. The basic shear strength, under a given loading is determined from the intersection of the demand and resistance curves. This paper verifies the applicability of resistance-demand procedure for predicting the shear capacity of high strength concrete beams without web reinforcement. A total of 18 beams were constructed and tested in four-point bending up to failure. The test variables included the longitudinal reinforcement ratio, the shear span to depth ratio, and the beam depth. The shear capacity of the beams was predicted using the proposed procedure and compared with the experimental values. The results of the comparison showed good prediction capability and can be useful to design practice.