• Title/Summary/Keyword: longitudinal shear

Search Result 532, Processing Time 0.028 seconds

A fast and robust procedure for optimal detail design of continuous RC beams

  • Bolideh, Ameneh;Arab, Hamed Ghohani;Ghasemi, Mohammad Reza
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.313-327
    • /
    • 2019
  • The purpose of the present study is to present a new approach to designing and selecting the details of multidimensional continuous RC beam by applying all strength, serviceability, ductility and other constraints based on ACI318-14 using Teaching Learning Based Optimization (TLBO) algorithm. The optimum reinforcement detailing of longitudinal bars is done in two steps. in the first stage, only the dimensions of the beam in each span are considered as the variables of the optimization algorithm. in the second stage, the optimal design of the longitudinal bars of the beam is made according to the first step inputs. In the optimum shear reinforcement, using gradient-based methods, the most optimal possible mode is selected based on the existing assumptions. The objective function in this study is a cost function that includes the cost of concrete, formwork and reinforcing steel bars. The steel used in the objective function is the sum of longitudinal and shear bars. The use of a catalog list consisting of all existing patterns of longitudinal bars based on the minimum rules of the regulation in the second stage, leads to a sharp reduction in the volume of calculations and the achievement of the best solution. Three example with varying degrees of complexity, have been selected in order to investigate the optimal design of the longitudinal and shear reinforcement of continuous beam.

Improvement of the behaviour of composite slabs: A new type of end anchorage

  • Fonseca, Alexandre;Marques, Bruno;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1381-1402
    • /
    • 2015
  • The application of composite steel-concrete slabs with profiled steel sheeting has increased, due to the various advantages in relation to reinforced concrete slabs such as, the reduced thickness, the reduced amount of lost formwork needed, as well as the speed of execution. The loss of longitudinal shear resistance is, generally, the governing design mode for simply supported spans of common lengths. For common distributed loadings, the composite behaviour is influenced by the partial shear connection between the concrete and the steel sheeting. The present research work is intended to contribute to improving the ultimate limit state behaviour of composite slabs using end anchorage. Eurocode 4, Part 1.1 (EN 1994-1-1) provides an analytical methodology for predicting the increase of longitudinal resistance, achieved by using shear studs welded through the steel sheeting as the end anchorage mechanism. The code does not supply an analytical methodology for other kinds of end anchorage so, additional tests or studies are needed to prove the effectiveness of these types of anchorage. The influence of end anchorage mechanisms provided by transverse rebars at the ends of simply supported composite slabs is analysed in this paper. Two experimental programmes were carried out, the first to determine the resistance provided by the new end anchorage mechanism and the second to analyse its influence on the behaviour of simply supported composite slabs.

Design for shear strength of concrete beams longitudinally reinforced with GFRP bars

  • Thomas, Job;Ramadassa, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • In this paper, a model for the evaluation of shear strength of fibre reinforced polymer (FRP)-reinforced concrete beams is given. The survey of literature indicates that the FRP reinforced beams tested with shear span to depth ratio less than or equal to 1.0 is limited. In this study, eight concrete beams reinforced with GFRP rebars without stirrups are cast and tested over shear span to depth ratio of 0.5 and 1.75. The concrete compressive strength is varied from 40.6 to 65.3 MPa. The longitudinal reinforcement ratio is varied from 1.16 to 1.75. The experimental shear strength and load-deflection response of the beams are determined and reported in this paper. A model is proposed for the prediction of shear strength of beams reinforced with FRP bars. The proposed model accounts for compressive strength of concrete, modulus of FRP rebar, longitudinal reinforcement ratio, shear span to depth ratio and size effect of beams. The shear strength of FRP reinforced concrete beams predicted using the proposed model is found to be in better agreement with the corresponding test data when compared with the shear strength predicted using the eleven models published in the literature. Design example of FRP reinforced concrete beam is also given in the appendix.

Estimate of Compressive Strength for Concrete using Ultrasonics by Multiple Regression Analysis Method (초음파를 이용한 중회귀분석법에 의한 콘크리트의 압축강도추정)

  • Park, I.G.;Han, E.K.;Kim, W.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.2
    • /
    • pp.22-31
    • /
    • 1991
  • Various types of ultrasonic techniques have been used for the estimation of compressive strength of concrete structures. However, conventional ultrasonic velocity method using only longitudial wave cannot be determined the compressive strength of concrete structures with accuracy. In this paper, by using the introduction of multiple parameter, e. g. velocity of shear wave, velocity of longitudinal wave, attenuation coefficient of shear wave, attenuation coefficient of longitudinal wave, combination condition, age and preservation method, multiple regression analysis method was applied to the determination of compressive strength of concrete structures. The experimental results show that velocity of shear wave can be estimated compressive strength of concrete with more accuracy compared with the velocity of longitudinal wave, accuracy of estimated error range of compressive strength of concrete structures can be enhanced within the range of ${\pm}$10% approximately.

  • PDF

Longitudinal Automatic Landing in AdaptivePID Control Law Under Wind Shear Turbulence

  • Ha, Cheol-keun;Ahn, Sang-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.30-38
    • /
    • 2004
  • This paper deals with a problem of automatic landing guidance and control ofthe longitudinal airplane motion under the wind shear turbulence. Adaptive gainscheduled PID control law is proposed in this paper. Fuzzy logic is the main part ofthe adaptive PID controller as gain scheduler. To illustrate the successful applicationof the proposed control law to the automatic landing control problem, numericalsimulation is carried out based on the longitudinal nonlinear airplane model excited bythe wind shear turbulence. The simulation results show that the automatic landingmaneuver is successfully achieved with the satisfactory performance and the gainadaptation of the control law is made adequately within the limited gains.

A modified shell-joint model for segmental tunnel dislocations under differential settlement

  • Jianguo Liu;Xiaohui Zhang;Yuyin Jin;Wenyuan Wang
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.411-424
    • /
    • 2023
  • Reasonable estimates of tunnel lining dislocations in the operation stage, especially under longitudinal differential settlement, are important for the design of waterproof gaskets. In this paper, a modified shell-joint model is proposed to calculate shield tunnel dislocations under longitudinal differential settlement, with the ability to consider the nonlinear shear stiffness of the joint. In the case of shell elements in the model, an elastoplastic damage constitutive model was adopted to describe the nonlinear stress-strain relationship of concrete. After verifying its applicability and correctness against a full-scale tunnel test and a joint shear test, the proposed model was used to analyze the dislocation behaviors of a shield tunnel in Shanghai Metro Line 2 under longitudinal differential settlement. Based on the results, when the tunnel structure is solely subjected to water-earth load, circumferential and longitudinal joint dislocations are all less than 0.1 mm. When the tunnel suffers longitudinal differential settlement and the curvature radius of the differential settlement is less than 300 m, although maximum longitudinal joint dislocation is still less than 0.1 mm, the maximum circumferential joint dislocation is approximately 10.3 mm, which leads to leakage and damage of the tunnel structure. However, with concavo-convex tenons applied to circumferential joints, the maximum dislocation value reduces to 4.5 mm.

An Ezperimental Study on the Behavior of Girder Ledge of Precast Girder-Beam Connection (피리캐스트 Girder-Beam 접합부에서 Girder Ledge의 거동에 관한 실험적 연구)

  • 김기범;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.483-491
    • /
    • 1997
  • The purpose of this study id to define the behavior of the girder ledge of precast girder-beam joint in Frame Type Precast Concrete Construction Method. And in behavior, girder ledge is different with bracket, because of longitudinal effective width and longitudinal bending. specif c objectives of this study are followed: $\circled1$ To investigate the effects of concrete compressive strength on the maximum shear strength of girder ledge, $\circled2$ To investigate the effects of the shear-span ratio and effective area on behavior of girder ledge, $\circled3$ To investigate the effects of the types of reinforcement on behavior and maximum shear strength of girder ledge, $\circled4$ To study the applicable possibility of the suggested shear friction formulas to estimating the shear strength of girder ledge.

  • PDF

Wave propagation in double nano-beams in thermal environments using the Reddy's high-order shear deformation theory

  • Fei Wu;Gui-Lin She
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.495-506
    • /
    • 2023
  • We study the bending wave, shear wave and longitudinal wave characteristics in the double nanobeams in this paper for the first time, in the process of research, based on the Reddy's higher-order shear deformation theory and considering shear layer stiffness, linear stiffness, inter-laminar stiffness, the pore volume fraction, temperature variation, functionally graded index influence on wave propagation, based on the nonlocal strain gradient theory and Hamilton variational principle, the wave equation of the double-nanometer beams are derived. Since there are three different motion states for the double nanobeams, which includes the cases of "in phase", "out of phase" and "one nanobeam fixed", the propagation characteristics of shear-, bending-, and longitudinal- waves in these three cases are discussed respectively, and some valuable conclusions are obtained.

Study on the Shape of a Longitudinal Joint of the Slab-type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량의 종방향 연결부 형상 결정에 관한 연구)

  • Lee, Sang Yoon;Song, Jae Joon;Kim, Hyeong Yeol;Lee, Young Ho;Lee, Jung Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.98-111
    • /
    • 2012
  • In this study, a longitudinal joint connection was proposed for the short-span slab-type precast modular bridges with rapid construction. The slab-type modular bridge consists of a number of precast slab modules and has the joint connection between the modules in the longitudinal direction of the bridge. The finite element based parameter analysis and the push-out test were conducted to design the shape and the dimensions of the longitudinal joint connection. Number of shear keys within the joint, height and depth of the shear key, tooth angle, and the spacing were considered as the design parameters. Using the local cracking load obtained from the analytical and experimental results, an efficiency factor was proposed to evaluate the effectiveness of the longitudinal joint connection. The dimensions of shear key were determined by comparing the efficiency factors.

Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.39-59
    • /
    • 2011
  • Results of an experimental investigation on the behavior and ultimate shear capacity of 27 reinforced concrete Transfer (deep) beams are summarized. The main variables were percent longitudinal(tension) steel (0.28 to 0.60%), percent horizontal web steel (0.60 to 2.40%), percent vertical steel (0.50to 2.25%), percent orthogonal web steel, shear span-to-depth ratio (1.10 to 3.20) and cube concrete compressive strength (32 MPa to 48 MPa).The span of the beam has been kept constant at 1000 mm with100 mm overhang on either side of the supports. The result of this study shows that the load transfer capacity of transfer (deep) beam with distributed longitudinal reinforcement is increased significantly. Also, the vertical shear reinforcement is more effective than the horizontal reinforcement in increasing the shear capacity as well as to transform the brittle mode of failure in to the ductile mode of failure. It has been observed that the orthogonal web reinforcement is highly influencing parameter to generate the shear capacity of transfer beams as well as its failure modes. Moreover, the results from the experiments have been processed suitably and presented an analytical model for design of transfer beams in high-rise buildings for estimating the shear capacity of beams.