• Title/Summary/Keyword: longitudinal distribution

Search Result 567, Processing Time 0.03 seconds

A simplified analysis of super building structures with setback

  • Takabatake, Hideo;Ikarashi, Fumiya;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.43-64
    • /
    • 2011
  • One-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. The mechanical behavior of structures composed of distinct constituents of different stiffness such as coupled walls with opening is significantly governed by the local variation of stiffness. Furthermore, in structures with setback the distribution of the longitudinal stress behaves remarkable nonlinear behavior in the transverse-wise. So, the author proposed the two-dimensional rod theory as an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. This paper proposes how to deal with the two-dimensional rod theory for structures with setback. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures. The transverse-wise nonlinear distribution of the longitudinal stress due to the existence of setback is clarified to originate from the long distance from setback.

Research on the longitudinal stress distribution in steel box girder with large cantilever

  • HONG, Yu;LI, ShengYu;WU, Yining;XU, Dailing;PU, QianHui
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • There are numerous structural details (Longitudinal beam, web plate, U-ribs and I-ribs) in the top and bottom plates of steel box girders, which have significant influences on the longitudinal stress (normal stress) distribution. Clarifying the influence of these structural details on the normal stress distribution is important. In this paper, the ultra-wide steel box girder with large cantilevers of the Jinhai Bridge in China, which is the widest cable-stayed bridge in the world, has been analyzed. A 1:4.5 scale laboratory model of the steel box girder has been manufactured, and the influence of structural details on the normal stress distribution in the top and bottom plates for four different load cases has been analyzed in detail. Furthermore, a three-dimensional finite element model has been established to further investigate the influence regularity of structural details on the normal stress. The experimental and finite element analysis (FEA) results have shown that different structural details of the top and bottom plates have varying effects on the normal stress distribution. Notably, the U-ribs and I-ribs of the top and bottom plates introduce periodicity to the normal stress distribution. The period of the influence of U-ribs on the normal stress distribution is the sum of the single U-rib width and the U-rib spacing, and that of the influence of I-ribs on the normal stress distribution is equal to the spacing of the I-ribs. Furthermore, the same structural details but located at different positions, will have a different effect on the normal stress distribution.

Experimental study on the influence of the ground surface slope on the longitudinal load transfer in shallow tunnel (얕은 터널에서 지표경사가 종방향 하중전이에 미치는 영향에 대한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.887-903
    • /
    • 2017
  • Lots of shallow tunnels are constructed in the mountainous areas where the stress distribution in the ground around tunnel is not simple, also the impact of stress conditions on the longitudinal load transfer characteristics is unclear. The tunnel construction methods and the ground conditions would also affect the longitudinal load transfer characteristics which would be dependant on the displacement patterns of tunnel face. Therefore, in this study, the slope of the ground surface was varied in $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and the longitudinal load transfer depended on the deformation conditions of tunnelface (that were maximum deformation on the top, constant deformation, and maximum deformation on the bottom), and the stress distribution at tunnelface. As results, when the tunnelface deformed, the earth presure on the tunnelface decreased and the load at tunnel crown increased. The load transferred on the crown was influenced by the earth presure on tunnel face. Smaller load would be transfered to the wide areas when the slope of ground surface decreased. When the slope of ground surface became larger, the longitudinal load transfer would be smaller and would be concentrated on tunnelface, In addition, the shape of the transferred load distribution in the longitudinal direction was dependant on the deformation shape of tunnelface. The deformation shape of tunnelface and stress conditions in longitudinal sections would affect the shape and the magnitude of the load transfer in the longitudinal directions.

Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part I. Theoretical Equation for Stream-Wise Velocity (개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : I. 흐름방향 유속의 횡분포)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.291-298
    • /
    • 2015
  • The aim of this study is that a theoretical formula for estimating the one-dimensional longitudinal dispersion coefficient is derived based on a transverse distribution equation for the depth averaged stream-wise velocity in open channel. In "Part I. Theoretical equation for stream-wise velocity" which is the former volume of this article, the velocity distribution equation is derived analytically based on the Shiono-Knight Model (SKM). And then incorporating the velocity distribution equation into a triple integral formula which was proposed by Fischer (1968), the one-dimensional longitudinal dispersion coefficient can be derived theoretically in "Part II. Longitudinal dispersion coefficient" which is the latter volume of this article. SKM has presented an analytical solution to the Navier-Stokes equation to describe the transverse variations, and originally been applied to straight and nearly straight compound channel. In order to use SKM in modeling non-prismatic and meandering channels, the shape of cross-section is regarded as a triangle in this study. The analytical solution for the velocity distribution is verified using Manning's equation and applied to velocity data measured at natural streams. Although the velocity equation developed in this study do not agree well with measured data case by case, the equation has a merit that the velocity distribution can be calculated only using geometric data including Manning's roughness coefficient without any measured velocity data.

Fish Distribution and Compositions Along with Altitude and Longitudinal Distance from the River Mouth in the Tamjin River Basin, Korea (탐진강수계 고도 및 하구로부터 거리에 따른 어류구성 및 분포특성)

  • Moon, Woonki;Bae, Daeyeul;Seo, Jinwon;An, Kwang-Guk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.512-522
    • /
    • 2012
  • This study is focused on fish fauna and distributional features along with physical gradients and stream orders in the Tamjin River basin, Korea. Fish sampling and investigation were conducted for 2 years from 2009 to 2010. Total number of fish species collected were 47 species of 16 family. The group of cyprinidae was mostly abundant. Both fish abundance and biotic index were declined with increasing altitude and longitudinal distance from the river mouth. Two species of Zacco temminckii and Pungtungia herzi were prevalent in most of sampling sites and showed no altitudinal and longitudinal differences. Most other species, however, were spatially restricted to specific regional altitudes. Several species including Zacco platypus, Squalidus gracilis majimae and P. herzi were broadly distributed from river mouth to 50 km. Eight species including Z. temminckii and Rhynchocypris oxycephalus only appeared in over 10 km from the river mouth. Both Odontobutis platycephala and Pseudobagrus koreanus were classified as "upstream dewelling species" observed only in over 30 km from the river mouth. High proportion of tolerant and omnivorous species were more dominated in the downstream zone of the dam, whereas intolerant and insectivorous species were abundant in the upstream zone of the dam. The variable of stream order showed positive relationship between number of fish species and total individuals collected. Sensitive species including insectivore had a declining tendency with increasing stream order, while tolerant specie including omnivore species had relatively increased with stream order. Overall, our study suggested that fish distribution considerably depends on altitudinal gradient and longitudinal distance from the river mouth as well as physical habitat.

Estimation of Hurst Parameter in Longitudinal Data with Long Memory

  • Kim, Yoon Tae;Park, Hyun Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.295-304
    • /
    • 2015
  • This paper considers the problem of estimation of the Hurst parameter H ${\in}$ (1/2, 1) from longitudinal data with the error term of a fractional Brownian motion with Hurst parameter H that gives the amount of the long memory of its increment. We provide a new estimator of Hurst parameter H using a two scale sampling method based on $A{\ddot{i}}t$-Sahalia and Jacod (2009). Asymptotic behaviors (consistent and central limit theorem) of the proposed estimator will be investigated. For the proof of a central limit theorem, we use recent results on necessary and sufficient conditions for multi-dimensional vectors of multiple stochastic integrals to converges in distribution to multivariate normal distribution studied by Nourdin et al. (2010), Nualart and Ortiz-Latorre (2008), and Peccati and Tudor (2005).

Behavior of PSC BOX Girder Bridges under Temperature Load (PSC 박스거더교의 온도하중에 대한 거동 연구)

  • 강상규;이형준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1157-1162
    • /
    • 2000
  • Transverse stress and longitudinal crack which are induced by temperature difference in box-girder sections and slab of which box-girder is composed have an important effect on endurance and economical efficiency of bridges. The study on longitudinal behavior of bridges which are subject to thermal load is reflected on the design of bridges. But, the study on transverse behavior of bridges has been performed just recently in foreign countries of finding the cause of longitudinal crack and in Korea, has not been tried in spite of large temperature variance due to geographical condition. This study examines temperature distribution feature in box-girder sections and bridge behavior due to thermal load, with measuring temperature distribution and stress of PSC box-girder bridge which is being constructed actually, and investigates appropriateness of design thermal load of highway bridge design code.

  • PDF

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 3-Phase Composites (연속섬유가 보강된 3상 복합재료의 종방향 전단계수 해석)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2782-2791
    • /
    • 1996
  • The effective longitudinal shear modulus(LSM) of continuous composites is studied theoretically and numerically using 3-phase unit cell model. Circular, hexagonal and rectangular shapes of reinforced fiber are considered to predict the shear modulus as a function of elastic modulus of each phase and volume fraction of interphase and reinforced fiber. It is found that rectangular fiber shape in low fiber volume fraction($v_f$<30%) and circular fiber shape in high volume fraction($v_f$>40%) shows the higher longitudinal shear modulus. Also the obtained values of LSM for rectangular array and by numerical analysis are higher than those of hexagonal array and by theoretical analysis respectively. The reinforcing effects of interphase are more significant in cases of higher fiber volume fraction and circular fiber shape. Not only the spatial distribution and shape of reinforcing fiber but also the volume of interphase have a pronounced effects on the overall LSM. It is also found that the tangent moduous of 2-and 3-phase polymer matrix composites is insensitive to the shape and distribution of reinforcing fibers.

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 2-Phase Composites (연속섬유가 보강된 2상 복합재료의 종방향 전단계수 해석)

  • Lee, Dong-Ju;Jeong, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2770-2781
    • /
    • 1996
  • Longitudinal shear modulus of continuous fiber reinforced 2-phase composites is predicted by theoretical and numerical analysis methods. In this paper, circular, hexagonal and rectangular shapes of reinforced fiber are considered using unit cell concept. And fiber array is regular rectangular and hexagonal fiber arrangement. Longitudinal shear modulus is a function of fiber distribution pattern and fiber volume change. It is found that the rectangular array has a higher longitudinal shear modulus than the hexagonal one. Also, the rectangular fiber shape in lower fiber volume fraction and the circular fiber shape in higher fiber volume fraction show the higher longitudinal shear modulus. And it has been found that the theoretical and numerical predictions of the longitudinal shear modulus give a good agreement with the experimental data at lower fiber volume fraction. Both the distance and stress transfer between the fibers are discussed as the major determing factors.