• Title/Summary/Keyword: longitudinal deformation profile (LDP)

Search Result 3, Processing Time 0.018 seconds

A new formulation for calculation of longitudinal displacement profile (LDP) on the basis of rock mass quality

  • Rooh, Ali;Nejati, Hamid Reza;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.539-545
    • /
    • 2018
  • Longitudinal Displacement Profile (LDP) is an appropriate tool for determination of the displacement magnitude of the tunnel walls as a function of the distance to the tunnel face. Some useful formulations for calculation of LDP have been developed based on the monitoring data on site or by 3D numerical simulations. However, the presented equations are only based on the tunnel dimensions and for different quality of rock masses proposed a unique LDP. In the present study, it is tried to present a new formulation, for calculation of LDP, on the basis of Rock mass quality. For this purpose, a comprehensive numerical simulation program was developed to investigate the effect of rock mass quality on the LDP. Results of the numerical modelling were analyzed and the least square technique was used for fitting an appropriate curve on the derived data from the numerical simulations. The proposed formulation in the present study, is a logistic function and the constants of the logistic function were predicted by rock mass quality index (GSI). Results of this study revealed that, the LDP curves of the tunnel surrounded by rock masses with high quality (GSI>60) match together; because the rock mass deformation varies over an elastic range.

Longitudinal Deformation Profile in Tunnel using Measured Data (계측자료를 이용한 터널의 종단변형도)

  • Jang, Won-Yil;Yang, Hyung-Sik;Chung, So-Keul
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.338-342
    • /
    • 2008
  • Longitudinal deformation profile(LDP) has been obtained mostly by numerical analysis. In this study, LDP was plotted by measured data from horizontal inclinometer and crown settlement. Deformation of foe ahead was determined by comparing to the maximum deformation point and deformation of after excavation was determined by regression of the measured crown settlement data. The result shows that crown deformation began as f3r as 3D ahead of the face. Crown settlement at the face was 40% of ultimate deformation, which was 10% higher than numerical results, and the deformation converged after excavation of 4D.

An investigation on tunnel deformation behavior of expressway tunnels

  • Chen, Shong-Loong;Lee, Shen-Chung
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.215-226
    • /
    • 2020
  • The magnitude and distribution of tunnel deformation were widely discussed topics in tunnel engineering. In this paper, a three-dimensional (3D) finite element program was used for the analysis of various horseshoe-shaped opening expressway tunnels under different geologies. Two rock material models - Mohr-Coulomb and Hoek-Brown were executed in the process of analyses; and the results show that the magnitude and distribution of tunnel deformation were close by these two models. The tunnel deformation behaviors were relevant to many factors such as cross-sections and geological conditions; but the geology was the major factor to the normalized longitudinal deformation profile (LDP). If the time-dependent factors were neglected, the maximum displacements were located at the distance of 3 to 4 tunnel diameters behind the excavation face. The ratios of displacement at the excavation face to the maximum displacement were around 1/3 to 1/2. In general, the weaker the rock mass, the larger the ratio. The displacements in front of the excavation face were decreased with the increasement of distance. At the distance of 1.0 to 1.5 tunnel diameter, the displacements were reduced to one-tenth of the maximum displacement.