• Title/Summary/Keyword: longitudinal crack

Search Result 240, Processing Time 0.019 seconds

Field-Observed Cracking of Paired Lightweight and Normalweight Concrete Bridge Decks

  • Cavalline, Tara L.;Calamusa, Jeremy T.;Kitts, Amy M.;Tempest, Brett Q.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • Research has suggested that conventional lightweight concrete can offer durability advantages due to reduced cracking tendency. Although a number of publications exist providing the results of laboratory-based studies on the durability performance of lightweight concrete (with lightweight coarse aggregate) and internally cured concrete (using prewetted lightweight fine aggregate), far fewer field studies of durability performance of conventional lightweight concrete bridge decks in service have been performed. This study was commissioned to provide insight to a highway agency on whether enhanced durability performance, and therefore reduced maintenance and longer lifecycles, could be anticipated from existing lightweight concrete bridge decks that were not intentionally internally cured. To facilitate performance comparison, each lightweight bridge deck selected for inclusion in this study was paired with a companion normalweight bridge deck on a bridge of similar structural type, deck thickness, and geometric configuration, with similar age, traffic, and environmental exposure. The field-observed cracking of the decks was recorded and evaluated, and crack densities for transverse, longitudinal, and pattern cracking of the normalweight and lightweight deck in each pair were compared. Although some trends linking crack prevalence to geographic location, traffic, and age were observed, a distinct difference between the cracking present in the paired lightweight and normalweight bridge decks included in this study was not readily evident. Statistical analysis using analysis of covariance (ANCOVA) to adjust for age and traffic influence did not indicate that the type of concrete deck (lightweight or normalweight) is a statistically significant factor in the observed cracking. Therefore, for these service environments, lightweight decks did not consistently demonstrate reduced cracking.

Experimental Study on the Capacity of Holed RC Beam Mixed with Waste Tire Particles (폐타이어 유공 철근콘크리트보의 내력에 관한 실험적연구)

  • Son, Ki-Sang;Lee, Won-Gyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.54-62
    • /
    • 2005
  • This Study is to find out how RC beam mixed with sawdust acts comparing with normal beam without sawdust mixture, and how they can be applied to the actual structural frame, despite a Int that they are mixed with waste material : saying sawdust. ED3H1, ED3H2, ED5H1, ED5H2, ED3H1UB, ED5H1UB, ED3H2L, ED5H2L and Normal without sawdust mixture are main factor to be tested here in order to apply them to the actual case. D and H means diameter 3cm or 5cm, and holes one and two respectively. And all variables are tested with each two for one variables. Test results are compared using crack diagrams and strain & loads. There are eleven(11)% capacity decrease between ED 3H1 and ED5H1 in rebar, strain. Left and right side crack shapes are much similar in variable ED3H2L having maximum capacity 14.5 tone. ED5H2L having maximum capacity thirteen(13)tone, in case of normal 19.6 tone. Two holes in beam rather on the longitudinal direction than on the forcing direction can be more effective to keep the original capacity of the beam because this case can distribute load more uniformly. There is 33% capacity decreased in case of diameter five(5)cm, compared to diameter three(3)cm. Two holes give thirty nine(39) percent capacity decrease than one of diameter three(3)cm.

Flexural Testing of Asymmetric Hybrid Composite Beams Fabricated from High-strength Steels (고강도강재를 적용한 비대칭 하이브리드 합성보의 휨거동 실험)

  • Jun, Su Chan;Han, Kyu Hong;Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.217-228
    • /
    • 2017
  • Full-scale flexural testing of asymmetric H-shape hybrid composite beams was conducted in this study. In fabricating hybrid H-shape sections, high strength steels were utilized for the bottom flange while ordinary strength steels were used for the top flange and web. With adding a fully composite floor slab, a total of 8 hybrid composite beam specimens were tested. The primary objective was to develop the asymmetric hybrid H-shape composite beams with maximized flexural efficiency and investigate their flexural behavior. Not all the hybrid composite specimens tested in this study exhibited the plastic moment and reasonable deformability. In the specimens with high-strength bottom flange, the longitudinal shear crack of the slab along the beam axis often preceded the development of beam plastic moment, although the slab was designed as fully composite. The mechanical reason for this unexpected behavior is discussed. It is emphasized that the longitudinal shear strength of composite slab should be checked in designing hybrid composite beams utilizing high strength steels like in this study.

Prediction of Shear Strength in High-Strength Concrete Beams without Web Reinforcement Considering Size Effect (크기효과를 고려한 복부보강이 없는 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Bae, Young-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.820-828
    • /
    • 2003
  • Recent research has indicated that the current ACI shear provision provides unconservative predictions for large slender beams and beams with low level of longitudinal reinforcement, and conservative results for deep beams. To modify some problems of ACI shear provision, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear prism in strut-tie model deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, effective depth, longitudinal reinforcement ratio, concrete compressive strength and shear span-to-depth ratio, about 300 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim &Park's equation and Zsutty's equation. The proposed shear equation is not only simpler than other shear equations, it is but also shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practical shear design.

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.

A Study on Mechanical Properties of Fillet Weldment in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 필릿용접부의 기계적특성에 관한 연구)

  • 김영표;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.49-58
    • /
    • 1996
  • In Korea Gas Corporation, as one of the pipeline repairing methods, damaged pipelines are sometimes treated with a temporally employment of split sleeve. On conducting the repair process, circumferential fillet and longitudinal groove welding usually must be included. For the case of groove welding, a considerable amount of R&D have been carried out related to property changes, while few study on the property change in fillet welding has been conducted. In this paper, so as to confirm the specification of fillet welding in terms of safety and reliability, properties changed by fillet welding were investigated for two welding processes. Qualifying tests such as reviewing macrostructure and nick-break tests were performed according to API 1104 and ASME section IX. In addition, tensile properties and hardness were evaluated according to KS B0841 and BS 4515. The fillet weld prepared by the qualified procedure showed melting depth of 0.8∼1.3mm and heat affected zone of 2.8∼3.4mm length. No crack and lack of penetration were observed. And the results of hardness and nick-break tests satisfied code requirements. The area crossed by fillet and groove welding line was found to have minimal tensile strength.

  • PDF

A Study on Carbon Fiber Sheet Rehabilitation of High Strength Reinforced Concrete Beams Mixed Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 탄소섬유쉬트 보강에 관한 연구)

  • 곽계환;곽경헌;정태영;고성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.491-496
    • /
    • 2001
  • In recent years, the research and development about the new material proceed rapidly and actively in the building industry. As building structures become bigger, higher and more specialized, so does the demand for material with higher strength. In the future, we will need to research repair and rehabilitation to make high strength concrete mixed steel fibrous building safe. The carbon fiber reinforced plastic bonding method is widely used in reinforcing the existing concrete structure among the various methods. The repair of initiate loaded reinforced high-strength concrete beams mixed steel fibrous with epoxy bonded Carbon Fiber Sheets(CFS) was investigated experimentally. The CFS thickness and length were varied to assess the peel failure at the curtailment of CFS, The behaviour of the repaired beams was represented by load-longitudinal steel strain relation and failure modes were discussed. The test results indicate that CFS is very effective for strengthening the demand beams and controlling deflections of reinforced high strength concrete beams mixed steel fibrous happen diagonal crack, the increase in the number of CFS layers over two layers didn't effect the increase in the strength of beams.

  • PDF

Bond of Deformed Bars to Concrete : Effects of Confinement and Strength of Concrete (철근 콘크리트 보-기둥 접합부의 부착거동에 대한 콘크리트 강도 및 보강철근의 효과)

  • 최기봉
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 1991
  • Slippage of beam longitudinal reinforcement at beam-column connections is an important cause of damage to reinforced concrete frames under static and dynamic loads, This paper summarizes the results of an experimen¬tal study on the effects of confinements and compressive strength of concrete on the local bond stress-slip cha¬racteristics of deformed bars. I t is concluded from experimental results that, as far as the bond splittmg cracks are restrained by the vertical column reinforcement, confinement of concrete by transverse reinforcement has insignigicant direct effect on the local bond behavior. The ultimate bond strength, however, Increases pro¬portionally with the square root of concrete compressive strength. An empirical model was developed for local bond st ressslip relationslip of deformed bars in confined concrete of different compressive strengths.

Nonlinear 3-D behavior of shear-wall dominant RC building structures

  • Balkaya, Can;Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The behavior of shear-wall dominant, low-rise, multistory reinforced concrete building structures is investigated. Because there are no beams or columns and the slab and wall thicknesses are approximately equal, available codes give little information relative to design for gravity and lateral loads. Items which effect the analysis of shear-wall dominant building structures, i.e., material nonlinearity including rotating crack capability, 3-D behavior, slab-wall interaction, floor flexibilities, stress concentrations around openings, the location and the amount of main discrete reinforcement are investigated. For this purpose 2 and 5 story building structures are modelled. To see the importance of 3-D modelling, the same structures are modelled by both 2-D and 3-D models. Loads are applied first the vertical then lateral loads which are static equivalent earthquake loads. The 3-D models of the structures are loaded in both in the longitudinal and transverse directions. A nonlinear isoparametric plate element with arbitrarily places edge nodes is adapted in order to consider the amount and location of the main reinforcement. Finally the importance of 3-D effects including the T-C coupling between walls are indicated.