• 제목/요약/키워드: long-term health monitoring system

검색결과 118건 처리시간 0.03초

중소교량의 지리적 특성을 고려한 무선 전력 및 통신 기술 기반 교량 장기 계측시스템 구축 방안 연구 (Wireless Bridge Health Monitoring System for Long-term Measurement of Small-sized Bridges )

  • 권태호;정규산;박기태;김병철;김재환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권4호
    • /
    • pp.86-93
    • /
    • 2023
  • 국내 교량들의 노후화 진행에 따라 구조물의 지속적인 안전관리를 위한 실시간 계측 기반의 교량 관리시스템이 필요하다. 현재 교량 계측시스템 기술은 대형 단일 교량의 계측을 중심으로 발전하여 유선을 기반으로 전원을 공급하고 계측 데이터를 수집한다. 하지만 산발적으로 분포하는 중소교량에는 위치적 문제로 인해 유선 기반 계측시스템을 적용하기 어렵다. 본 연구에서는 중소교량을 대상으로 무선 기반 계측시스템을 구축하는 방안을 제안하였다. 제안한 무선 기반 계측시스템은 기존 유선 기반의 계측시스템의 한계를 극복하기 위해 태양광 발전을 통해 무선 전원을 확보하였으며, LTE 통신을 활용하여 데이터를 송출하게 하였다. 또한, 교량 계측시스템의 관리를 위한 시스템 원격 제어 방안과 전원 관리 방안도 제안되었다. 제안한 계측시스템의 검증을 위해 실제 지방도상의 교량 32개소에 설치되었으며, 1년간의 장기 계측데이터를 수집하였다. 설치된 테스트 베드에서 80.6%의 계측데이터 취득이 가능함을 확인하여 제안한 계측시스템의 운용 가능성을 검증하였다. 제안된 시스템 구축방안은 지방도상 노후 교량들의 안전감시에 활용 가능할 것으로 기대된다.

무선센서네트워크 기반 휴대용 헬스케어 모니터링 시스템을 위한 휴대폰 자체 간이진단 관리 (Pre-diagnosis Management in WSN based Portable Healthcare Monitoring System)

  • 히패쳉;이승철;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.538-541
    • /
    • 2009
  • Increasing of number of people who suffered from long term chronic diseases which required frequent daily health monitoring and body check up in conjunction with the trendy uses of mobile phones and Personal Digital Assistants (PDAs) in various ubiquitous computing had make portable healthcare system a well known application today. A mobile phone based portable healthcare monitoring system with multiple vital signals monitoring ability at real time in WSN and CDMA network is developed. This system carries out real time monitoring and local data analysis process in the mobile phone. Any detection of abnormal health condition and diagnosis at earlier stage will reduce the risk of patient's life. As an extension to the existing model, a pre-diagnosis management system (PDMS) is designed to minimize the time consuming in pre-diagnosis process in the hospital or healthcare center. An alert is sent to the web server at the healthcare center when the patient detects his health is at critical state where the immediate diagnosis is needed. Preparation of diagnosis equipments and arrangement of doctor and nurses at the hospital side can be done earlier before the arrival of patient at the hospital with the help of PDMS. An efficient pre-diagnosis management increases the chances of diseases recovery rate as well.

  • PDF

포터블 기반 스마트 구조 응답 모니터링 시스템 개발 및 현장 적용성 평가 (Development of a Portable-Based Smart Structural Response Monitoring System and Evaluation of Field Applicability)

  • 박상기;서동우;박기태;김호진
    • 한국방재안전학회논문집
    • /
    • 제16권4호
    • /
    • pp.147-156
    • /
    • 2023
  • 케이블 교량의 거동은 동적 응답에 의해 지배적이며 상대적으로 복잡하므로 교량의 상태를 평가하기 위한 장단기 현장 계측이 요구되는 경우가 빈번하다. 영구적인 SHMS(Structural Health Monitoring System)가 설치되지 않은 경우 성능평가를 위해 이동식 모니터링 시스템이 필요하다. 이 경우 교량의 위치와 형태에 따라 전력, 통신 등의 제한된 여건으로 인해 이동식 모니터링 시스템 운영에 어려움이 발생할 수 있다. 본 연구에서는 국내는 물론 동남아 지역 교량의 장 ‧ 단기 모니터링에 효과적으로 활용될 수 있는 포터블 기반의 스마트 구조응답 모니터링 시스템을 개발하였다. 개발된 시스템은 현장에서 자체 전원 공급 시스템을 이용하여 장시간 운용이 가능한 다채널 휴대용 데이터 수집 및 분석 장비이며, 실시간 데이터를 이용하여 케이블 교량의 동적 특성을 자동으로 분석할 수 있는 알고리즘을 탑재하고 있다. 개발된 시스템의 현장 적용성을 평가하기 위해 한국과 베트남의 케이블 교량에서 현장 실증을 수행하였으며, 이를 통해 개발된 시스템의 현장 운영의 신뢰성과 효율성을 확인하였고, 추가적으로 케이블 교량 모니터링 분야에서의 해외 시장 적용 가능성을 확인하였다.

Localized reliability analysis on a large-span rigid frame bridge based on monitored strains from the long-term SHM system

  • Liu, Zejia;Li, Yinghua;Tang, Liqun;Liu, Yiping;Jiang, Zhenyu;Fang, Daining
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.209-224
    • /
    • 2014
  • With more and more built long-term structural health monitoring (SHM) systems, it has been considered to apply monitored data to learn the reliability of bridges. In this paper, based on a long-term SHM system, especially in which the sensors were embedded from the beginning of the construction of the bridge, a method to calculate the localized reliability around an embedded sensor is recommended and implemented. In the reliability analysis, the probability distribution of loading can be the statistics of stress transferred from the monitored strain which covered the effects of both the live and dead loads directly, and it means that the mean value and deviation of loads are fully derived from the monitored data. The probability distribution of resistance may be the statistics of strength of the material of the bridge accordingly. With five years' monitored strains, the localized reliabilities around the monitoring sensors of a bridge were computed by the method. Further, the monitored stresses are classified into two time segments in one year period to count the loading probability distribution according to the local climate conditions, which helps us to learn the reliability in different time segments and their evolvement trends. The results show that reliabilities and their evolvement trends in different parts of the bridge are different though they are all reliable yet. The method recommended in this paper is feasible to learn the localized reliabilities revealed from monitored data of a long-term SHM system of bridges, which would help bridge engineers and managers to decide a bridge inspection or maintenance strategy.

Investigation of the SHM-oriented model and dynamic characteristics of a super-tall building

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang;Ou, Xiang;Chen, Chen-Jie
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.295-306
    • /
    • 2019
  • Shanghai Tower is a 632-meter super high-rise building located in an area with wind and active earthquake. A sophisticated structural health monitoring (SHM) system consisting of more than 400 sensors has been built to carry out a long-term monitoring for its operational safety. In this paper, a reduced-order model including 31 elements was generated from a full model of this super tall building. An iterative regularized matrix method was proposed to tune the system parameters, making the dynamic characteristic of the reduced-order model be consistent with those in the full model. The updating reduced-order model can be regarded as a benchmark model for further analysis. A long-term monitoring for structural dynamic characteristics of Shanghai Tower under different construction stages was also investigated. The identified results, including natural frequency and damping ratio, were discussed. Based on the data collected from the SHM system, the dynamic characteristics of the whole structure was investigated. Compared with the result of the finite element model, a good agreement can be observed. The result provides a valuable reference for examining the evolution of future dynamic characteristics of this super tall building.

영종대교 계측시스템의 신호데이터 분석 (Signal Analysis from a Long-Term Bridge Monitoring System in Yongjong Bridge)

  • 김성곤;고현무;이정휘;배인환
    • 한국지진공학회논문집
    • /
    • 제10권6호
    • /
    • pp.9-18
    • /
    • 2006
  • 영종대교에 설치된 교량 모니터링 시스템의 구성특징을 살펴보고 이로부터 계측, 수집된 각 신호들의 특성을 조사 분석하였다. 3차원 자정식 현수교인 영종대교에 설치, 운영되는 모니터링 시스템의 구성은 센서-현장하드웨어-계측서버-관리자로 연결되는 자동화된 시스템으로써 개통 이후부터 교량의 거동 및 하중효과를 대변하는 물리량을 측정하고 있다. 이 논문에서는 시스템의 구성 및 측정항목에 대한 소개와 온도변화에 의한 시그널에의 영향을 감시 할 수 있는 알고리즘의 개발과정을 언급한다. 또한, 행어 케이블의 장력측정 방법의 일환으로 길이가 짧고 장력이 큰 케이블에 대해 정적으로 장력산정이 가능한 장치 및 알고리즘의 개발에 대해 소개한다. 특히 이 교량의 공용중에 이루어진 철도통행을 위한 설비의 추가로 교량 구조계의 변화를 계측 신호를 바탕으로 분석, 제시하였다. 이러한 각종 계측 및 모니터링 결과는 향후 교량의 상태판정의 기본자료로 활용되어 효율적 유지관리를 가능하게 할 것으로 기대된다.

USN 기반의 대형 사회 기반 시설물 계측 시스템 개발 (Development of Structural Health Monitoring System based USN for a Huge Infrastructure)

  • 김태봉
    • 전기학회논문지P
    • /
    • 제65권1호
    • /
    • pp.7-12
    • /
    • 2016
  • With due to the recent development of USN (Ubiquitous Sensor Network) technology, a monitoring system has been developing for assuring the structural integrity of infrastructure through normal or long term measurements during their lifetime. An accident such as a collapse of infrastructure may cause not only loss of life but also damage to the economy of the nation. In order to enhance the availability of infrastructure and to be able to maintain their lifetime, it is necessary to monitor and to evaluate continuously the structural integrity throughout their entire lifetime. The purpose of this paper is to develop a monitoring system integrated with evaluation function based on the ubiquitous technology. The most essential part of this study is focusing more on developing a specific module convertible to A/D, which is to enhance the applicability of sensors that had not been applied to existing monitoring systems. Conclusively it has been successfully enhanced to make more diverse the number of sensors and measuring techniques for the monitoring system.

Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach

  • Bubryur Kim;K.R. Sri Preethaa;Zengshun Chen;Yuvaraj Natarajan;Gitanjali Wadhwa;Hong Min Lee
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.379-392
    • /
    • 2023
  • Structural health monitoring is used to ensure the well-being of civil structures by detecting damage and estimating deterioration. Wind flow applies external loads to high-rise buildings, with the horizontal force component of the wind causing structural displacements in high-rise buildings. This study proposes a deep learning-based predictive model for measuring lateral displacement response in high-rise buildings. The proposed long short-term memory model functions as a sequence generator to generate displacements on building floors depending on the displacement statistics collected on the top floor. The model was trained with wind-induced displacement data for the top floor of a high-rise building as input. The outcomes demonstrate that the model can forecast wind-induced displacement on the remaining floors of a building. Further, displacement was predicted for each floor of the high-rise buildings at wind flow angles of 0° and 45°. The proposed model accurately predicted a high-rise building model's story drift and lateral displacement. The outcomes of this proposed work are anticipated to serve as a guide for assessing the overall lateral displacement of high-rise buildings.

Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: design and deployment

  • Liu, Hong-biao;Zhang, Qiang;Zhang, Bao-hua
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.163-173
    • /
    • 2017
  • Structural health monitoring (SHM) of civil infrastructure using fiber Bragg grating sensor networks (FBGSNs) has received significant public attention in recent years. However, there is currently little research on the health-monitoring technology of high-piled wharfs in coastal ports using the fiber Bragg grating (FBG) sensor technique. The benefits of FBG sensors are their small size, light weight, lack of conductivity, resistance corrosion, multiplexing ability and immunity to electromagnetic interference. Based on the properties of high-piled wharfs in coastal ports and servicing seawater environment and the benefits of FBG sensors, the SHM system for a high-piled wharf in the Tianjin Port of China is devised and deployed partly using the FBG sensor technique. In addition, the health-monitoring parameters are proposed. The system can monitor the structural mechanical properties and durability, which provides a state-of-the-art mean to monitor the health conditions of the wharf and display the monitored data with the BIM technique. In total, 289 FBG stain sensors, 87 FBG temperature sensors, 20 FBG obliquity sensors, 16 FBG pressure sensors, 8 FBG acceleration sensors and 4 anode ladders are installed in the components of the back platform and front platform. After the installation of some components in the wharf construction site, the good signal that each sensor measures demonstrates the suitability of the sensor setup methods, and it is proper for the full-scale, continuous, autonomous SHM deployment for the high-piled wharf in the costal port. The South 27# Wharf SHM system constitutes the largest deployment of FBG sensors for wharf structures in costal ports to date. This deployment demonstrates the strong potential of FBGSNs to monitor the health of large-scale coastal wharf structures. This study can provide a reference to the long-term health-monitoring system deployment for high-piled wharf structures in coastal ports.

A versatile software architecture for civil structure monitoring with wireless sensor networks

  • Flouri, Kallirroi;Saukh, Olga;Sauter, Robert;Jalsan, Khash Erdene;Bischoff, Reinhard;Meyer, Jonas;Feltrin, Glauco
    • Smart Structures and Systems
    • /
    • 제10권3호
    • /
    • pp.209-228
    • /
    • 2012
  • Structural health monitoring with wireless sensor networks has received much attention in recent years due to the ease of sensor installation and low deployment and maintenance costs. However, sensor network technology needs to solve numerous challenges in order to substitute conventional systems: large amounts of data, remote configuration of measurement parameters, on-site calibration of sensors and robust networking functionality for long-term deployments. We present a structural health monitoring network that addresses these challenges and is used in several deployments for monitoring of bridges and buildings. Our system supports a diverse set of sensors, a library of highly optimized processing algorithms and a lightweight solution to support a wide range of network runtime configurations. This allows flexible partitioning of the application between the sensor network and the backend software. We present an analysis of this partitioning and evaluate the performance of our system in three experimental network deployments on civil structures.