• 제목/요약/키워드: long-term forecasting

검색결과 376건 처리시간 0.03초

중소유통기업지원을 위한 상품 카테고리 재분류 기반의 수요예측 및 상품추천 방법론 개발 (Development of the Demand Forecasting and Product Recommendation Method to Support the Small and Medium Distribution Companies based on the Product Recategorization)

  • 이상일;유영웅;나동길
    • 산업경영시스템학회지
    • /
    • 제47권2호
    • /
    • pp.155-167
    • /
    • 2024
  • Distribution and logistics industries contribute some of the biggest GDP(gross domestic product) in South Korea and the number of related companies are quarter of the total number of industries in the country. The number of retail tech companies are quickly increased due to the acceleration of the online and untact shopping trend. Furthermore, major distribution and logistics companies try to achieve integrated data management with the fulfillment process. In contrast, small and medium distribution companies still lack of the capacity and ability to develop digital innovation and smartization. Therefore, in this paper, a deep learning-based demand forecasting & recommendation model is proposed to improve business competitiveness. The proposed model is developed based on real sales transaction data to predict future demand for each product. The proposed model consists of six deep learning models, which are MLP(multi-layers perception), CNN(convolution neural network), RNN(recurrent neural network), LSTM(long short term memory), Conv1D-BiLSTM(convolution-long short term memory) for demand forecasting and collaborative filtering for the recommendation. Each model provides the best prediction result for each product and recommendation model can recommend best sales product among companies own sales list as well as competitor's item list. The proposed demand forecasting model is expected to improve the competitiveness of the small and medium-sized distribution and logistics industry.

멀티미디어 이동통신서비스를 위한 주파수 수요예측 모형 (Frequency Forecasting Model for Next Wireless Multimedia Services)

  • 장희선;한성수;여재현;최성호
    • 산업공학
    • /
    • 제18권3호
    • /
    • pp.333-342
    • /
    • 2005
  • In this paper, we propose an efficient forecasting methodology of the mid and long-term frequency demand in Korea. The methodology consists of the following three steps: classification of basic service group, calculation of effective traffic, and frequency forecasting. Based on the previous studies, we classify the services into wide area mobile, short range radio, fixed wireless access and digital video broadcasting in the step of the classification of basic service group. For the calculation of effective traffic, we use the measures of erlang and bps. The step of the calculation of effective traffic classifies the user and basic application, and evaluates the effective traffic. Finally, in the step of frequency forecasting, different methodology will be proposed for each service group and its applications are presented.

SARIMA 모형을 이용한 우리나라 항만 컨테이너 물동량 예측 (Forecasting the Korea's Port Container Volumes With SARIMA Model)

  • 민경창;하헌구
    • 대한교통학회지
    • /
    • 제32권6호
    • /
    • pp.600-614
    • /
    • 2014
  • 본 연구는 SARIMA 모형을 활용하여 기존에 다루어지지 않았던 분기별 항만 컨테이너 물동량을 예측하였다. 구체적으로 모델 추정에 활용된 자료는 1994년 1사분기부터 2010년 4사분기까지 총 84분기동안의 국내 전체 항만 컨테이너 물동량 자료이다. 본 연구에서 추정된 예측 모형의 예측 정확도를 검증하기 위하여 2011년 1사분기부터 2013년 4사분기까지 물동량을 예측하여 실제 물동량과 비교하였다. 또한 기존에 널리 활용되고 있는 ARIMA 모형을 활용하여 추정한 예측 모형과의 비교를 통해 분기별 항만 물동량 예측에 있어서 SARIMA 모형의 상대적 우수성을 검증하였다. 기존에 항만 물동량을 예측하는 대부분의 연구는 주로 장기 예측에 초점이 맞추어져 있다. 또한 월별, 연도별 물동량 자료가 활용된 경우가 대부분이다. 분기별 항만 컨테이너 물동량 자료를 활용하여 단기 수요를 예측함과 동시에 SARIMA 모형의 우수성을 입증한 본 연구는 충분한 가치가 있다고 판단된다.

Extended Forecasts of a Stock Index using Learning Techniques : A Study of Predictive Granularity and Input Diversity

  • ;이동윤
    • Asia pacific journal of information systems
    • /
    • 제7권1호
    • /
    • pp.67-83
    • /
    • 1997
  • The utility of learning techniques in investment analysis has been demonstrated in many areas, ranging from forecasting individual stocks to entire market indexes. To date, however, the application of artificial intelligence to financial forecasting has focused largely on short predictive horizons. Usually the forecast window is a single period ahead; if the input data involve daily observations, the forecast is for one day ahead; if monthly observations, then a month ahead; and so on. Thus far little work has been conducted on the efficacy of long-term prediction involving multiperiod forecasting. This paper examines the impact of alternative procedures for extended prediction using knowledge discovery techniques. One dimension in the study involves temporal granularity: a single jump from the present period to the end of the forecast window versus a web of short-term forecasts involving a sequence of single-period predictions. Another parameter relates to the numerosity of input variables: a technical approach involving only lagged observations of the target variable versus a fundamental approach involving multiple variables. The dual possibilities along each of the granularity and numerosity dimensions entail a total of 4 models. These models are first evaluated using neural networks, then compared against a multi-input jump model using case based reasoning. The computational models are examined in the context of forecasting the S&P 500 index.

  • PDF

전력수급기본계획에서 발전소 준공 불확실성에 대한 고찰 (A Study on the Uncertainty of Additional Generating Capacity in Long Term Electricity Plan)

  • 김창수;이창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.843-845
    • /
    • 2005
  • The uncertainty of long term electricity plan consists of the uncertainty of demand forecast and additional generating capacity. Demand forecast is clearly improved the accuracy than the past through improving forecasting methods. However, the uncertainty of additional generating capacity is increased due to the change of market environment. In an operation by a sole utility, additional generating capacity would be possible by the regulation of government. Currently the generation companies have spined off from KEPCO and some IPPs participate the electricity market. It increases the uncertainty due to weakened regulation. Also the environment movement by NGOs and occurrence of civil affairs cause the increase of uncertainty. This research would analyze the current situation on the uncertainty of additional generating capacity and construction delays. Furthermore this research would present the plan to reflecting it in long term electricity plan.

  • PDF

LSTM을 활용한 컨테이너 물동량 예측 (Forecasting Container Throughput with Long Short Term Memory)

  • 임상섭
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.617-618
    • /
    • 2020
  • 우리나라의 지리적인 여건상 대륙과 연결되지 않기 때문에 해상운송에 절대적으로 의존하고 있다. 해상운송에 있어 항만시설의 확보가 필요하며 대외무역의존도가 높은 우리나라의 경우 더욱 중요한 역할을 한다. 항만시설은 장기적인 항만수요예측을 통해 대규모 인프라투자를 결정하며 단기적인 예측은 항만운영의 효율성을 개선하고 항만의 경쟁력을 제고하는데 기여하므로 예측의 정확성을 높이기 위해 많은 노력이 필요하다. 본 논문에서는 딥러닝 모델 중에 하나인 LSTM(Long Short Term Memory)을 적용하여 우리나라 주요항만의 컨테이너 물동량 단기예측을 수행하여 선행연구들에서 주류를 이뤘던 ARIMA류의 시계열모델과 비교하여 예측성능을 평가할 것이다. 본 논문은 학문적으로 항만수요예측에 관한 새로운 예측모델을 제시하였다는 측면에서 의미가 있으며 실무적으로 항만수요예측에 대한 정확성을 개선하여 항만투자의사결정에 과학적인 근거로서 활용이 가능할 것으로 기대된다.

  • PDF

기상 변수를 고려한 모델에 의한 단기 최대전력수요예측 (Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable)

  • 고희석;이충식;최종규;지봉호
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.73-78
    • /
    • 2001
  • 특수일 부하를 예측하기 위하여 BP 신경회로망 모형과 다중 회귀모형을 구성한다. 신경회로망 모형은 패턴 변환비를 이용하고, 다중회귀 모형은 평일 환산비를 이용하여 특수일 부하를 예측한다. 주간 피크 부하예측 모형에 패턴 변환비를 이용하여 짧고 긴 특수일 부하를 예측 한 결과 주간 평균 오차율이 1∼2[%]로 나와 본 기법의 적합성을 확인할 수 있다. 하지만, 패턴 변환비 방법으로는 하계의 특수일 부하 예측은 어려웠다. 따라서 기온-습도, 불쾌지수 등을 설명변수로 하는 다중 회귀 모형을 구성하고 평일 환산비를 이용하여 하계의 특수일 부하를 예측한다. 평일만의 예측 모형과 예측 결과를 비교해 보면 월 평균 오차율이 비슷하게 나와 이용한 방법의 적합성을 확인하였다. 그리고, 통계적 검정을 통해 구성한 예측 모형의 유효성을 입증할 수 있었다. 이로서 본 연구에서 제시한 특수일 부하를 예측하는 기법의 적합성을 확인함으로서 피크 부하 예측시 큰 난점 중의 하나가 해결되었다.

  • PDF

유류화물 항만물동량 예측모형 개발 연구 (An introduction of new time series forecasting model for oil cargo volume)

  • 김정은;오진호;우수한
    • 한국항만경제학회지
    • /
    • 제34권1호
    • /
    • pp.81-98
    • /
    • 2018
  • 우리나라의 경제발전은 무역을 주축으로 하고 있어 항만을 통한 물류가 필수적이다. 항만의 운영과 개발을 위해 막대한 자본과 시간이 투자되고 있으며 항만은 국가 경제 전반에 영향을 미치고 있다. 따라서 사회 경제적 손실을 방지하기 위해선 적정수준의 개발계획이 중요하다. 항만시설 계획은 항만 물동량 예측을 기반으로 수립되므로, 정확한 물동량 예측이 선행되어야 한다. 더불어 항만에서는 품목별로 취급 방식이 다르므로 품목별 예측이 이루어져야 구체적인 시설계획이 가능하다. 따라서 컨테이너 화물이나 항만 전체 물동량에 대해 주로 예측했던 선행 연구들과는 달리 본 논문에서는 전체 물동량에서 큰 비중을 차지하고 있는 유류화물을 분석 대상으로 설정하였다. 단기, 중장기의 주기적 특성과 추세를 갖고 있는 유류화물 물동량을 효율적으로 예측하고자 새로운 예측모형인 TSMR을 개발하였다. TSMR모형의 검증을 위해 기존의 시계열 모형들과 비교분석을 진행하였으며 ARIMA모형의 경우 물동량 데이터가 안정화되지 않아 유효한 결과를 산출할 수 없었다. 윈터스 가법, 단순계절모형과 비교하였을 때 단기적인 예측에는 다소 취약하였으나, TSMR모형의 전반적인 적합도와 예측력은 우수한 것으로 나타났다. 또한 철강, 유연탄, 기계류의 물동량 분석결과 TSMR모형의 일반화 가능성도 충분한 것으로 나타났다.

Long Term Prediction of Korean-U.S. Exchange Rate with LS-SVM Models

  • Hwang, Chang-Ha;Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.845-852
    • /
    • 2003
  • Forecasting exchange rate movements is a challenging task since exchange rates impact world economy and determine value of international investments. In particular, Korean-U.S. exchange rate behavior is very important because of strong Korean and U.S. trading relationship. Neural networks models have been used for short-term prediction of exchange rate movements. Least squares support vector machine (LS-SVM) is used widely in real-world regression tasks. This paper describes the use of LS-SVM for short-term and long-term prediction of Korean-U.S. exchange rate.

  • PDF

회귀모형과 신경회로망 모형을 이용한 단기 최대전력수요예측 (Short-term Peak Load Forecasting using Regression Models and Neural Networks)

  • 고희석;지봉호;이현무;이충식;이철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.295-297
    • /
    • 2000
  • In case of power demand forecasting the most important problem is to deal with the load of special-days, Accordingly, this paper presents a method that forecasting special-days load with regression models and neural networks. Special-days load in summer season was forecasted by the multiple regression models using weekday change ratio Neural networks models uses pattern conversion ratio, and orthogonal polynomial models was directly forecasted using past special-days load data. forecasting result obtains % forecast error of about $1{\sim}2[%]$. Therefore, it is possible to forecast long and short special-days load.

  • PDF