• Title/Summary/Keyword: long-term forecast

Search Result 288, Processing Time 0.025 seconds

Application of Deep Learning to Solar Data: 1. Overview

  • Moon, Yong-Jae;Park, Eunsu;Kim, Taeyoung;Lee, Harim;Shin, Gyungin;Kim, Kimoon;Shin, Seulki;Yi, Kangwoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2019
  • Multi-wavelength observations become very popular in astronomy. Even though there are some correlations among different sensor images, it is not easy to translate from one to the other one. In this study, we apply a deep learning method for image-to-image translation, based on conditional generative adversarial networks (cGANs), to solar images. To examine the validity of the method for scientific data, we consider several different types of pairs: (1) Generation of SDO/EUV images from SDO/HMI magnetograms, (2) Generation of backside magnetograms from STEREO/EUVI images, (3) Generation of EUV & X-ray images from Carrington sunspot drawing, and (4) Generation of solar magnetograms from Ca II images. It is very impressive that AI-generated ones are quite consistent with actual ones. In addition, we apply the convolution neural network to the forecast of solar flares and find that our method is better than the conventional method. Our study also shows that the forecast of solar proton flux profiles using Long and Short Term Memory method is better than the autoregressive method. We will discuss several applications of these methodologies for scientific research.

  • PDF

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

Effects of Macroeconomic Conditions and External Shocks for Port Business: Forecasting Cargo Throughput of Busan Port Using ARIMA and VEC Models

  • Nam, Hyung-Sik;D'agostini, Enrico;Kang, Dal-Won
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.449-457
    • /
    • 2022
  • The Port of Busan is currently ranked as the seventh largest container port worldwide in terms of cargo throughput. However, port competition in the Far-East region is fierce. The growth rate of container throughput handled by the port of Busan has recently slowed down. In this study, we analyzed how economic conditions and multiple external shocks could influence cargo throughput and identified potential implications for port business. The aim of this study was to build a model to accurately forecast port throughput using the ARIMA model, which could incorporate external socio-economic shocks, and the VEC model considering causal variables having long-term effects on transshipment cargo. Findings of this study suggest that there are three main areas affecting container throughput in the port of Busan, namely the Russia-Ukraine war, the increased competition for transshipment cargo of Chinese ports, and the weaker growth rate of the Korean economy. Based on the forecast, in order for the Port of the Port of Busan to continue to grow as a logistics hub in Northeast-Asia, policy intervention is necessary to diversify the demand for transshipment cargo and maximize benefits of planned infrastructural investments.

BIM-BASED TIME SERIES COST MODEL FOR BUILDING PROJECTS: FOCUSING ON MATERIAL PRICES

  • Sungjoo Hwang;Moonseo Park;Hyun-Soo Lee;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.1-6
    • /
    • 2011
  • As large-scale building projects have recently increased for the residential, commercial and office facilities, construction costs for these projects have become a matter of great concern, due to their significant construction cost implications, as well as unpredictable market conditions and fluctuations in the rate of inflation during the projects' long-term construction periods. In particular, recent volatile fluctuations of construction material prices fueled such problems as cost forecasting. This research develops a time series model using the Box-Jenkins approach and material price time series data in Korea in order to forecast trends in the unit prices of required materials. Building information modeling (BIM) approaches are also used to analyze injection times of construction resources and to conduct quantity take-off so that total material prices can be forecast. To determine an optimal time series model for forecasting price trends, comparative analysis of predictability of tentative autoregressive integrated moving average (ARIMA) models is conducted. The proposed BIM-based time series forecasting model can help to deal with sudden changes in economic conditions by estimating material prices that correspond to resource injection times.

  • PDF

N-point modified exponential model for household projections in Korea using multi-point register-based census data

  • Saebom Jeon;Tae Yeon Kwon
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.377-391
    • /
    • 2024
  • Accurate household projections are essential for sectors such as housing supply and tax policy planning, given the rapid social changes like declining birthrates, an aging population, and a rise in single-person households that impact household size and type. Korea introduced its first register-based census in 2015, transitioning from five-year general survey-based approach to an annual administrative data-based census. This change in census allows for more frequent and effective capturing the rapid demographic shifts and trends. However, this change in census has caused challenges in future projection by the existing household projection model due to the rapid dynamics. This paper proposes a new household projection method, the N-point Modified Exponential Model (MEM), that accurately reflects register-based census data and mitigates the impact of rapid demographic changes, in three types: the Weighted N-point MEM, the Regression-based N-point MEM, and the Rolling Weighted N+point MEM. Using register-based census data from 2016 to 2020 to forecast household headship rates by age, household size, and household type to 2051, the N-point modified exponential model outperformed the existing model in both long- and short-term forecast accuracy, suggesting its suitability as a future household projection model for Korea.

Informative Role of Marketing Activity in Financial Market: Evidence from Analysts' Forecast Dispersion

  • Oh, Yun Kyung
    • Asia Marketing Journal
    • /
    • v.15 no.3
    • /
    • pp.53-77
    • /
    • 2013
  • As advertising and promotions are categorized as operating expenses, managers tend to reduce marketing budget to improve their short term profitability. Gauging the value and accountability of marketing spending is therefore considered as a major research priority in marketing. To respond this call, recent studies have documented that financial market reacts positively to a firm's marketing activity or marketing related outcomes such as brand equity and customer satisfaction. However, prior studies focus on the relation of marketing variable and financial market variables. This study suggests a channel about how marketing activity increases firm valuation. Specifically, we propose that a firm's marketing activity increases the level of the firm's product market information and thereby the dispersion in financial analysts' earnings forecasts decreases. With less uncertainty about the firm's future prospect, the firm's managers and shareholders have less information asymmetry, which reduces the firm's cost of capital and thereby increases the valuation of the firm. To our knowledge, this is the first paper to examine how informational benefits can mediate the effect of marketing activity on firm value. To test whether marketing activity contributes to increase in firm value by mitigating information asymmetry, this study employs a longitudinal data which contains 12,824 firm-year observations with 2,337 distinct firms from 1981 to 2006. Firm value is measured by Tobin's Q and one-year-ahead buy-and-hold abnormal return (BHAR). Following prior literature, dispersion in analysts' earnings forecasts is used as a proxy for the information gap between management and shareholders. For model specification, to identify mediating effect, the three-step regression approach is adopted. All models are estimated using Markov chain Monte Carlo (MCMC) methods to test the statistical significance of the mediating effect. The analysis shows that marketing intensity has a significant negative relationship with dispersion in analysts' earnings forecasts. After including the mediator variable about analyst dispersion, the effect of marketing intensity on firm value drops from 1.199 (p < .01) to 1.130 (p < .01) in Tobin's Q model and the same effect drops from .192 (p < .01) to .188 (p < .01) in BHAR model. The results suggest that analysts' forecast dispersion partially accounts for the positive effect of marketing on firm valuation. Additionally, the same analysis was conducted with an alternative dependent variable (forecast accuracy) and a marketing metric (advertising intensity). The analysis supports the robustness of the main results. In sum, the results provide empirical evidence that marketing activity can increase shareholder value by mitigating problem of information asymmetry in the capital market. The findings have important implications for managers. First, managers should be cognizant of the role of marketing activity in providing information to the financial market as well as to the consumer market. Thus, managers should take into account investors' reaction when they design marketing communication messages for reducing the cost of capital. Second, this study shows a channel on how marketing creates shareholder value and highlights the accountability of marketing. In addition to the direct impact of marketing on firm value, an indirect channel by reducing information asymmetry should be considered. Potentially, marketing managers can justify their spending from the perspective of increasing long-term shareholder value.

  • PDF

A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity (장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측을 위한 시계열 모형 연구)

  • Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.1053-1061
    • /
    • 2013
  • In this paper, we propose the time series forecasting models for internet traffic with long memory and heteroscedasticity. To control and forecast traffic volume, we first introduce the traffic forecasting models which are determined by the volatility and heteroscedasticity of the traffic. We then analyze and predict the heteroscedasticity and the long memory properties for forecasting traffic volume. Depending on the characteristics of the traffic, Fractional ARIMA model, Fractional ARIMA-GARCH model are applied and compared with the MAPE(Mean Absolute Percentage Error) Criterion.

An introduction of new time series forecasting model for oil cargo volume (유류화물 항만물동량 예측모형 개발 연구)

  • Kim, Jung-Eun;Oh, Jin-Ho;Woo, Su-Han
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.1
    • /
    • pp.81-98
    • /
    • 2018
  • Port logistics is essential for Korea's economy which heavily rely on international trade. Vast amounts of capital and time are consumed for the operation and development of ports to improve their competitiveness. Therefore, it is important to forecast cargo volume in order to establish the optimum level of construction and development plan. Itemized forecasting is necessary for appropriate port planning, since disaggregate approach is able to provides more realistic solution than aggregate forecasting. We introduce a new time series model which is Two-way Seasonality Multiplied Regressive Model (TSMR) to forecast oil cargo volume, which accounts for a large portion of total cargo volume in Korea. The TSMR model is designed to take into account the characteristics of oil cargo volume which exhibits trends with short and long-term seasonality. To verify the TSMR model, existing forecasting models are also used for a comparison reason. The results shows that the TSMR excels the existing models in terms of forecasting accuracy whereas the TSMR displays weakness in short-term forecasting. In addition, it was shown that the TSMR can be applied to other cargoes that have trends with short- and long-term seasonality through testing applicability of the TSMR.

Analysis about relation of Long-term & Short-term Financial Market, Stock Market and Foreign Exchange Market of Korea (한국 장단기 금융시장, 주식 및 외환시장 연관성)

  • 김종권
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.105-125
    • /
    • 1999
  • The results of analysis on foreign exchange market, stock and financial market after January of 1997 are that foreign exchange market will be affected by stock and financial market volatility about 1999. This means that stock and financial market are more stable than foreign exchange market. This also is supported by ‘financial market forecast of 1999 in Daewoo Economic Research Institute’. After won/dollar (end of period) will be increasing in 1,430 at second quarter of 1999, this is to downward 1,200 fourth quarter of 1999. This is somewhat based on government's higher exchange rate policy. But, after yield of corporate bond is to 11.0% at first quarter of 1999, this will be stable to 10.2% at fourth quarter. During the first quarter of 1999, yield of corporate bond is to somewhat increasing through sovereign debt and public bonds, technical adjustment of interest rate. After this, yield of corporate bond will be stable according to stability of price, magnification of money supply, restucturing of firms. So, stock market is favorably affected by stability of financial market. But, the pension and fund of USA, i.e., long-term portfolio investment fund, are injected through international firm's management. It is included by openness of audit, fair market about foreign investors. Finally, Moody's strong rating on the won-denominated bonds suggest that Korea's sovereign debt ratings could be restored to an investment grade in the near future. It sequentially includes inflow of foreign portfolio investment fund, fall of won/dollar foreign exchange rate (appreciation of won) and stability of yield of corporate bond.

  • PDF

The Multisector Model of the Korean Economy: Structure and Coefficients (한국경제(韓國經濟)의 다부문모형(多部門模型) : 모형구조(模型構造)와 추정결과(推定結果))

  • Park, Jun-kyung;Kim, Jung-ho
    • KDI Journal of Economic Policy
    • /
    • v.12 no.4
    • /
    • pp.3-20
    • /
    • 1990
  • The multisector model is designed to analyze and forecast structural change in industrial output, employment, capital and relative price as well as macroeconomic change in aggregate income, interest rate, etc. This model has 25 industrial sectors, containing about 1,300 equations. Therefore, this model is characterized by detailed structural disaggregation at the sectoral level. Individual industries are based on many of the economic relationships in the model. This is what distinguishes a multisector model from a macroeconomic model. Each industry is a behavioral agent in the model for industrial investment, employment, prices, wages, and intermediate demand. The strength of the model lies in the simulating the interactions between different industries. The result of its simulation will be introduced in the next paper. In this paper, we only introduce the structure of the multisector model and the coefficients of the equations. The multisector model is a dynamic model-that is, it solves year by year into the future using its own solutions for earlier years. The development of a dynamic, year-by-year solution allows us to combine the change in structure with a consideration of the dynamic adjustment required. These dynamics have obvious advantages in the use of the multisector model for industrial planning. The multisector model is a medium-term and long-term model. Whereas a short-term model can taken the labor supply and capital stock as given, a long-term model must acknowledge that these are determined endogenously. Changes in the medium-term can be analyzed in the context of long-term structural changes. The structure of this model can be summarized as follow. The difference in domestic and world prices affects industrial structure and the pattern of international trade; domestic output and factor price affect factor demand; factor demand and factor price affect industrial income; industrial income and relative price affect industrial consumption. Technical progress, as measured in terms of total factor productivity and relative price affect input-output coefficients; input-output coefficients and relative price determine the industrial input cost; input cost and import price determine domestic price. The differences in productivity and wage growth among different industries affect the relative price.

  • PDF