• Title/Summary/Keyword: long-term deformation behavior

Search Result 89, Processing Time 0.033 seconds

A 12-year long-term study on the external deformation behavior of Geosynthetic Reinforced Soil (GRS) walls

  • Won, Myoung-Soo;Lee, O-Hyeon;Kim, You-Seong;Choi, Se-Kyung
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.565-575
    • /
    • 2016
  • Geosynthetics reinforced soil (GRS) walls constructed on weak grounds may change in both the horizontal earth pressure and deformation on wall facing. However, only few studies were done in the literature to measure and analyze the horizontal external deformation behavior of GRS walls constructed on soft grounds for a long period of time. The present study describes the external deformation behavior of GRS walls observed for 12-year long-term performance. The horizontal deformation of the geosynthetics-wrapped-facing GRS walls shows a passive behavior along one third of the wall height, from top going downwards, and active behavior for the rest of the wall height. Even if the geogrid and nonwoven geotextiles are exposed directly to sunlight and rainfalls in a span of 12 years, they have functioned well as wall facing. Therefore, the geosynthetic reinforcement material is strong enough to resist ultraviolet rays.

Deformation characteristics of tunnel bottom after construction under geological conditions of long-term deformation

  • Kim, Nag-Young;Park, Du-Hee;Jung, Hyuk-Sang;Kim, Myoung-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • Mountainous areas cover more than 70% of Korea. With the rapid increase in tunnel construction, tunnel-collapse incidents and excessive deformation are occurring more frequently. In addition, longer tunnel structures are being constructed, and geologically weaker ground conditions are increasingly being encountered during the construction process. Tunnels constructed under weak ground conditions exhibit long-term deformation behavior that leads to tunnel instability. This study analyzes the behavior of the bottom region of tunnels under geological conditions of long-term deformation. Long-term deformation causes various types of damage, such as cracks and ridges in the packing part of tunnels, as well as cracks and upheavals in the pavement of tunnels. We observed rapid tunnel over-displacement due to the squeezing of a fault rupture zone after the inflow of a large amount of groundwater. Excessive increments in the support member strength resulted in damage to the support and tunnel bottom. In addition, upward infiltration pressure on the tunnel road was found to cause severe pavement damage. Furthermore, smectite (a highly expandable mineral), chlorite, illite, and hematite, were also observed. Soil samples and rock samples containing clay minerals were found to have greater expansibility than general soil samples. Considering these findings, countermeasures against the deformation of tunnel bottoms are required.

Prediction of the long-term deformation of high rockfill geostructures using a hybrid back-analysis method

  • Ming Xu;Dehai Jin
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.83-97
    • /
    • 2024
  • It is important to make reasonable prediction about the long-term deformation of high rockfill geostructures. However, the deformation is usually underestimated using the rockfill parameters obtained from laboratory tests due to different size effects, which make it necessary to identify parameters from in-situ monitoring data. This paper proposes a novel hybrid back-analysis method with a modified objective function defined for the time-dependent back-analysis problem. The method consists of two stages. In the first stage, an improved weighted average method is proposed to quickly narrow the search region; while in the second stage, an adaptive response surface method is proposed to iteratively search for the satisfactory solution, with a technique that can adaptively consider the translation, contraction or expansion of the exploration region. The accuracy and computational efficiency of the proposed hybrid back-analysis method is demonstrated by back-analyzing the long-term deformation of two high embankments constructed for airport runways, with the rockfills being modeled by a rheological model considering the influence of stress states on the creep behavior.

Long-Term Behavior of Geogrid Reinforced Soil Abutment - A Numerical Investigation (지오그리드 보강토 교대의 장기거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik;Jeon, Han-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.65-76
    • /
    • 2011
  • This paper presents the results of a numerical investigation on the long-term behavior of geosynthetic reinforced soil abutment. The investigation was carried out aiming at identifying the governing mechanisms of the long-term deformation of geosynthetic-reinforced soil abutment subjected to sustained loads during service life. A numerical modeling strategy was first established using the Singh-Mitchell creep model and the power law model, respectively, for the backfill and the geosyntehtic reinforcement. A parametric study on the creep properties of the backfill and the geosynthetic reinforcement was then conducted. The results indicated that a geosynthetic reinforced soil structure backfilled with marginal soil may exhibit substantial long-term deformation due to the creep effects caused by both the backfill soil and the geosynthetic reinforcement, the magnitude of which depends largely on the creep properties. This paper highlights the importance of considering the creep effect on load supporting geosynthetic reinforced soil structures when the long-term serviceability requirement is of prime importance.

Long-term Behavior of IPC Girder Bridge (IPC 거더 교량의 장기거동 해석)

  • 권승희;김진근;이상순;한만엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.107-112
    • /
    • 2001
  • The IPC(Incremental Prestressed Concrete) which is gradually introducing the tensile force by tendons has been recently developed for reducing the effective depth of PSC bridges. As well known, concrete experiences long-term deformation such as creep and drying shrinkage, and the prediction of the long-term behavior of concrete bridges is essential for both safety and serviceability aspects. This paper was analysed the long-term behavior of a continuous 2-span IPC girder bridge taking into consideration of creep, drying shrinkage and the time of tensile force introduction. As results, the shrinkage of slab concrete increases the negative moment at interior support, and the The difference of concrete ages between slab and girder increases the camber. The effect of initial tensile force is larger than the effect of secondary tensile force in the tendons.

  • PDF

Prediction of Long-Term behavior of polyethylene pipe buried underground (지중매설 폴리에틸렌 관의 장기거동 예측)

  • Lee, Jae-Ho;Kim, Bin;Yoon, Soo-Hyun;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Most of existing buried pipes are composed of reinforced concrete. Reinforced concrete pipes have many problems such as aging, corrosion, leaking, etc. The polyethylene (PE) pipes have advantages to solve these problems. The plastic pipes buried underground are classified into a flexible pipe. National standard that has limited the long-term vertical deformation of the pipe to 5% for flexible pipes including PE pipe. This study presents a prediction for the long-term behavior of the polyethylene pipe based on ASTM D 5365. This prediction method is presented to estimate by using the statistical method from the initial deflection measurement data. We predict the behavior of long-term performance on the double-wall pipe and multi-wall pipe. As a result, it was found that the PE pipe will be sound enough more than 50 years if the compaction of soil around the pipe is more than 95% of the standard soil compaction density.

Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning (타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측)

  • S. Cheon;J. Yu;S.H. Lee;M.-S. Lee;T.-S. Jun;T. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

A Study for the Long Term Behavior of Steel-Concrete Composite Structures (합성구조물의 장기거동에 관한 연구)

  • 김진근;어석홍;김윤용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.325-330
    • /
    • 1994
  • In this study, analytical methods for predicting the long term behavior of steel-concrete composite structures due to creep and shrinkage of concrete are investigated. For structural analysis considering long term behavior, the results are much dependent6 on the predictive models for creep and shrinkage of concrete which are ACI model, CEB-FIP model and BP model and the methods for the time analysis of structures which are AEMM, RCM and IDM. To demonstrate the validity of the program which was developed for this study, a steel-concrete composite column subjected to constant axial deformation was tested, and the experimental results wewe compared with analytical results. It was found that stresses are redistributed between concrete and wide flange steel, and analytical results by ACI model and IDM well predict the experimental data.

  • PDF

Study on the Long-term Behavior of SRC Columns Considering the Differential Moisture Distribution in a Section (단면 내의 부등수분분포를 고려한 SRC 기둥의 장기거동에 관한 연구)

  • Seol Hyun-Cheol;Kim Jin-Keun;Kim Yun-Yong;Kwon Seung-Hee;Kim Han-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.109-112
    • /
    • 2004
  • It was found from the previous experimental studies that the long-term deformation of SRC columns was quite different from that of RC columns. A new approach method is needed to quantitatively predict the long-term deformation of SRC columns. In this study, the causes of the difference between the behaviors of RC and SRC columns are investigated and discussed. SRC columns exhibit a time-dependent relative humidity distribution in a cross section differently from that of RC columns due to the presence of a flange, which interferes with the moisture diffusion of concrete. This different relative humidity distribution may reduce the drying shrinkage and the drying creep in comparison with RC columns.

  • PDF

Numerical Modeling of Long-Term Behavior of Geosynthetic Reinforced Soil Wall used in Bridge Abutment (보강토 교대 옹벽의 장기 거동에 대한 수치 모델링)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.105-112
    • /
    • 2011
  • This paper presents the numerical modelling technique for modeling the time-dependent behavior of geosynthetic reinforced soil wall under a sustained load. The applicability of power law-based creep models for modeling the creep deformations of geogrid and reinforced soil was first examined. The modeling approach was then used to simulate the long-term performance of a geosynthetic reinforced soil wall used in a bridge abutment. The results indicated that the power law-based models can be effectively used for modelling the long term behavior of geosynthetic reinforced walls under sustained loading. In addition, it was shown that, when using creep deformation susceptible backfill soils, the abutment wall and the sill beam may experience deformations exceeding allowable limits. Practical implications of the findings from this study are discussed in great detail.