• Title/Summary/Keyword: long-term bridge monitoring

Search Result 109, Processing Time 0.021 seconds

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

Long Term Monitoring of Prestressing Tension Force in Post-Tension UHPC Bridge using Fiber Optical FBG Sensor (FBG 광섬유센서가 내장된 7연 강연선을 이용한 포스트텐션 UHPC 교량의 긴장력 장기모니터링)

  • Kim, Hyun-Woo;Kim, Jae-Min;Choi, Song-Yi;Park, Sung-Yong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.699-706
    • /
    • 2015
  • This paper presents results of one-year monitoring on prestressing force of a 7-wire steel post-tensioning strand which is installed in a UHPC(ultra high performance concrete) bridge with 11.0 m long, 5.0 m wide, and 0.6 m high by using a FBG-encapsulated 7-wire steel strand. The initial prestressing forces and the prestress changes during a vehicle load test were measured using the FBG-encapsulated strand. The results show that the FBG-encapsulated 7-wire strand is very effective for monitoring the prestress forces even the change in the tension force is very small. Additionally, it was indicated that selection of the thermal expansion coefficient which is used for the temperature correction shall be carefully carried out.

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.

Evaluation of time-dependent deflections on balanced cantilever bridges

  • Rincon, Luis F.;Viviescas, Alvaro;Osorio, Edison;Riveros-Jerez, Carlos A.;Lozano-Galant, Jose Antonio
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.487-495
    • /
    • 2021
  • The use of prestressed concrete box girder bridges built by segmentally balanced cantilevers has bloomed in the last decades due to its significant structural and construction advantages in complex topographies. In Colombia, this typology is the most common solution for structures with spans ranging of 80-200 m. Despite its popularity, excessive deflections in bridges worldwide evidenced that time-dependent effects were underestimated. This problem has led to the constant updating of the creep and shrinkage models in international code standards. Differences observed between design processes of box girder bridges of the Colombian code and Eurocode, led to the need for a validation of in-service status of these structures. This study analyzes the long-term behavior of the Tablazo bridge with data scarcity. The measured leveling of this structure is compared with a finite-element model that consider the most widely used creep and shrinkage models in the literature. Finally, an adjusted model evidence excessive deflection on the bridge after six years. Monitoring of this bridge typology in Colombia and updating of the current design code is recommended.

A versatile software architecture for civil structure monitoring with wireless sensor networks

  • Flouri, Kallirroi;Saukh, Olga;Sauter, Robert;Jalsan, Khash Erdene;Bischoff, Reinhard;Meyer, Jonas;Feltrin, Glauco
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.209-228
    • /
    • 2012
  • Structural health monitoring with wireless sensor networks has received much attention in recent years due to the ease of sensor installation and low deployment and maintenance costs. However, sensor network technology needs to solve numerous challenges in order to substitute conventional systems: large amounts of data, remote configuration of measurement parameters, on-site calibration of sensors and robust networking functionality for long-term deployments. We present a structural health monitoring network that addresses these challenges and is used in several deployments for monitoring of bridges and buildings. Our system supports a diverse set of sensors, a library of highly optimized processing algorithms and a lightweight solution to support a wide range of network runtime configurations. This allows flexible partitioning of the application between the sensor network and the backend software. We present an analysis of this partitioning and evaluate the performance of our system in three experimental network deployments on civil structures.

Evaluation of Applicability of Cable Force Monitoring System of Cable-stayed Bridge by Field Loading Test (재하시험을 통한 사장교의 케이블 장력 모니터링 시스템의 적용성 평가)

  • Kim, Jeong-Hoon;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.205-213
    • /
    • 2009
  • This study was planned to develop monitoring system of cable force to resolve cable force of cable-stayed bridge efficiently in a long-term plan. In the proposed monitoring system, firstly data are sampled from real-time acceleration record, secondly these sampled data are frequency analyzed by using the FFT(Fast Fourier Transform) algorism and lastly the analyzed results are averaged and generalized. For evaluating the applicability of this monitoring system, field loading test has performed in real cable-stayed bridge. In comparison with cable force by field manual calculation and cable force of monitoring system by semi-automatic calculation, the difference of calculated cable forces has within 1% error range and it is acceptable range. Additionally within negligible 5% error range of difference has occur between field manual calculation and monitoring system by automatic calculation. so monitoring system in this study has been verified to be reliable.

Remote structural health monitoring systems for next generation SCADA

  • Kim, Sehwan;Torbol, Marco;Chou, Pai H.
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.511-531
    • /
    • 2013
  • Recent advances in low-cost remote monitoring systems have made it possible and practical to perform structural health monitoring (SHM) on a large scale. However, it is difficult for a single remote monitoring system to cover a wide range of SHM applications due to the amount of specialization required. For the remote monitoring system to be flexible, sustainable, and robust, this article introduces a new cost-effective, advanced remote monitoring and inspection system named DuraMote that can serve as a next generation supervisory control and data acquisition (SCADA) system for civil infrastructure systems. To evaluate the performance of DuraMote, we conduct experiments at two representative counterpart sites: a bridge and water pipelines. The objectives of this article are to improve upon the existing SCADA by integrating the remote monitoring system (i.e., DuraMote), to describe a prototype SCADA for civil engineering structures, and to validate its effectiveness with long-term field deployment results.

Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data

  • Ye, X.W.;Yi, Ting-Hua;Su, Y.H.;Liu, T.;Chen, B.
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 2017
  • The structural strain plays a significant role in structural condition assessment of in-service bridges in terms of structural bearing capacity, structural reliability level and entire safety redundancy. Therefore, it has been one of the most important parameters concerned by researchers and engineers engaged in structural health monitoring (SHM) practices. In this paper, an SHM system instrumented on the Jiubao Bridge located in Hangzhou, China is firstly introduced. This system involves nine subsystems and has been continuously operated for five years since 2012. As part of the SHM system, a total of 166 fiber Bragg grating (FBG) strain sensors are installed on the bridge to measure the dynamic strain responses of key structural components. Based on the strain monitoring data acquired in recent two years, the strain-based structural condition assessment of the Jiubao Bridge is carried out. The wavelet multi-resolution algorithm is applied to separate the temperature effect from the raw strain data. The obtained strain data under the normal traffic and wind condition and under the typhoon condition are examined for structural safety evaluation. The structural condition rating of the bridge in accordance with the AASHTO specification for condition evaluation and load and resistance factor rating of highway bridges is performed by use of the processed strain data in combination with finite element analysis. The analysis framework presented in this study can be used as a reference for facilitating the assessment, inspection and maintenance activities of in-service bridges instrumented with long-term SHM system.

A simple measurement system for train vehicle load (운행 열차의 윤중측정을 위한 계측장비 개발)

  • 방춘석;이준석
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1074-1079
    • /
    • 2002
  • Long term measurement data on the bridge response caused by moving loads are fundamental ingredient to the development or improvement of the new bridge design. In addition, proper establishment of the systematic analysis and diagnosis together with the maintenance system become the essential procedure to the effective repair/reinforcement/retrofit of not only the high speed but also the conventional railway bridges. Therefore, the real time health monitoring system on the important railway bridges should be enhancing the proper maintenance of the structures. The main objective of this study is, therefore, to develop a monitoring device including Weigh-In-Motion (WIM) function and the emphasis is place on the easy and economic installation of the developed system in the field condition.

  • PDF

Estimation of Damping Properties of Bridge Structures under Ambient Vibration Condition (상시진동신호를 이용한 교량의 감쇠특성 추정)

  • Kim, Sung-Wan;Park, Dong-Uk;Kim, Nam-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.93-100
    • /
    • 2008
  • Recently, due to the advanced measurement techniques, long-term health monitoring systems have been frequently applied to existing bridges. It is known that damping ratios as one of dynamic properties would be an important parameter for evaluating the bridge condition. However, damping ratios may be normally varied depending on the external loading effects on bridges. In general, both the logarithmic decrement and the half-power band width method as a conventional method can be simply used for evaluating the damping ratios accurately when bridge response signals are measured under free vibration conditions. In this study, the Hilbert-Huang transform and the extended Kalman filter were applied to evaluate the damping ratio by using the bridge acceleration signals measured under ambient vibration condition. From the results under ambient vibration condition of bridges, it was examined that the damping ratios evaluated from both the Hilbert-Huang transform and the extended Kalman filter could be more reliable than those from conventional methods.

  • PDF