• Title/Summary/Keyword: long-span slab

Search Result 77, Processing Time 0.034 seconds

Curling Behavior of Long-Span Concrete Pavement Slab under Environmental Loads (환경하중에 의한 장스팬 콘크리트 포장 슬래브의 컬링 거동 특성 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom;Yun, Dong-Ju
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.151-161
    • /
    • 2009
  • This study was conducted to investigate the characteristics of the curling behavior of long-span pavement slabs under environmental loads. By developing and using finite element models of the long-span pavement slabs, the stress distribution and the effects of slab length, slab thickness, stiffness of underlying layers, and the restraints of the slab ends on the curling behavior were analyzed. In addition, the field experiments were performed with the actual long-span pavement slab to obtain the curling behavior of the real structure under environmental loads. As a result of this study, it was found that the vertical displacements of the long-span pavement slab along the centerline due to the curling behavior were zero except for the areas near the slab ends, and the curling stresses were maximum and constant where the displacements were zero. The slab length and the stiffness of underlying layers did not affect the maximum curling stresses. The restraints at the slab ends made the curling stresses occur near the slab ends, but did not much affect the maximum curling stresses.

  • PDF

Design Bending Moments For Long-Span Slab On a Composite Two-Girder Bridge (2거더 강합성교를 위한 장지간 바닥판 설계 휨모멘트)

  • Yoon, Hye-Jin;Joh, Chang-Bin;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.754-757
    • /
    • 2004
  • This study was performed to propose design bending moment formula for long-span slab on a composite two-girder bridge. FEM models representing slab spaning between 4m and 12m were analyzed, and parameters such as girder flexibility and orthotropy of slab were considered. By regression of the parametric analyses results, the moment formula that can predict the design moment with reasonable margin of safety and correctness was developed. The research also showed that the design bending moment from Korean Bridge Design Code overestimated the design moment for the span length under gm, and underestimated for the span length over 9m.

  • PDF

Interaction analysis of Continuous Slab Track (CST) on long-span continuous high-speed rail bridges

  • Dai, Gonglian;Ge, Hao;Liu, Wenshuo;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • As a new type of ballastless track, longitudinal continuous slab track (CST) has been widely used in China. It can partly isolate the interaction between the ballastless track and the bridge and thus the rail expansion device would be unnecessary. Compared with the traditional track, CST is composed of multi layers of continuous structures and various connecting components. In order to investigate the performance of CST on a long-span bridge, the spatial finite element model considering each layer of the CST structure, connecting components, bridge, and subgrade is established and verified according to the theory of beam-rail interaction. The nonlinear resistance of materials between multilayer track structures is measured by experiments, while the temperature gradients of the bridge and CST are based on the long-term measured data. This study compares the force distribution rules of ballasted track and CST as respectively applied to a long span bridge. The effects of different damage conditions on CST structures are also discussed. The results show that the additional rail stress is small and the CST structure has a high safety factor under the measured temperature load. The rail expansion device can be cancelled when CST is adopted on the long span bridge. Beam end rotation caused by temperature gradient and vertical load will have a significant effect on the rail stress of CST. The additional flexure stress should be considered with the additional expansion stress simultaneously when the rail stress of CST requires to be checked. Both the maximum sliding friction coefficient of sliding layer and cracking condition of concrete plate should be considered to decide the arrangement of connecting components and the ultimate expansion span of the bridge when adopting CST.

Minimum Thickness of Long Span RC Deck Slabs for Composite 2-girder Bridges Designed by KL-510 Load Model (KL-510 하중모형을 적용한 강합성 2거더교 RC 장지간 바닥판의 최소두께)

  • Park, Woo-Jin;Hwang, Hoon-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.72-78
    • /
    • 2014
  • The minimum thickness of long-span deck slab is proposed by checking the limit state according to the Korean highway bridge design code(limit state design). Both minimizing thickness and ensuring safety of deck slab are important design factors to increase a competitive price of the long span deck slabs. The required thicknesses for satisfying flexural capacity, preventing punching shear failure and limiting deflection were calculated by considering KL-510 load model which has increased total load compared to DB 24 from 432 kN to 510 kN. The results of the required thickness for various limit states were compared to propose the minimum thickness as a function of span length of deck slabs. The proposed minimum thickness is influenced by satisfying flexural capacity and limiting deflection. It turns out to be similar compared to the results of the previous study by ultimate strength design method even if the live load model was increased in total weights.

Long-Term Characteristics on Flexural Performance of Steel Fiber Reinforced Concrete Continuous Slab (강섬유보강콘크리트 연속슬래브 휨성능의 장기거동 특성)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.163-170
    • /
    • 2019
  • In spite of various advantages, steel fiber reinforced concrete is still limited in its use due to the insufficient research results on the structural performance and design criteria. This study evaluated the long-term behavior of the steel fiber reinforced concrete slabs by long-term loading experiments based on the short-term load bearing capacity of steel fiber reinforced concrete slabs obtained from previous studies. In this study, long-term loading experiments were carried out on Total four 2-span continuous slab specimens were tested for examining the long-term behavior of steel fiber reinforced concrete members. Long-term behavior characteristics of members were evaluated by measuring the long-term deflection, drying shrinkage, the number and width of cracks. Experimental results showed that the instant deflection of the steel fiber reinforced concrete slab is about 50% of the normal reinforced concrete slab. And, it was analyzed that the long-term deflection of the specimen using steel fiber reinforced concrete was about 10~20% lower than that of normal concrete by the long-term deflection over 100 days. In addition, the slab specimen using steel fiber reinforced concrete was evaluated to have just 70% of the number and width of cracks compared with normal concrete specimens.

Minimum Design Thickness of Prestressed Concrete Deck Slabs for Composite Two-Girder Bridges (강합성 2거더교 프리스트레스트 바닥판의 설계 최소두께)

  • Hwang, Hoon Hee;Joh, Changbin;Kwark, Jong Won;Lee, Yong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.183-190
    • /
    • 2006
  • Minimizing the self weight of long-span deck slabs is one of the key factors for the practical and economic design of a composite two-girder bridge. In this paper, the minimum design thickness and rebar details of prestressed concrete deck slabs for composite two-girder bridges with girder span length from 4 m to 12 m are studied based on the safety and serviceability. The bridge deck slab with minimum thickness is designed as a one-way slab considering orthotropic behavior. Then fatigue safety of the deck slab is examined. Serviceability requirements for the deck slab such as deflection and crack width limits are also examined. The result shows that rebars with diameter less than 16 mm is recommended for the improved fatigue behavior, and, for the deck slab with span length longer than 8 m, the deflection limit governs the minimum design thickness. The result also shows that, for the deck slab with span length longer than 4 m, the distribution rebar requirement in the current Korea Highway Bridge Design Code is not sufficient to maintain the structural continuity in bridge axis as expected from the deck slab with span length shorter than 3 m.

Ultimate Behavior of I-beam Composite Hollow Slabs (I형강 합성 중공바닥판의 극한거동)

  • 심창수;정영수;김대호;박창규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.177-180
    • /
    • 2003
  • I-beam composite hollow slabs were proposed for long-span slabs and long-span bridges due to their higher stiffness and strength. However, the behavior of the composite slab is quite complicate and allowable stress design method is used for the design of the slab. In this paper, static tests on the composite hollow slabs were performed and their inelastic behavior was investigated. Ultimate strength of the composite slabs were evaluated and the contribution of each I-beam to the flexural strength of the slab was also estimated using the measured strain distribution. From the results of these experiments, I-beam composite hollow slabs can be designed by strength design method.

  • PDF

Evaluation of Serviceability to Long Span Hollow Core PC Slab (장스팬 Hollow Core PC 슬래브의 사용성 평가에 관한 연구)

  • Jeong, Hyung-Il;Kang, Ji-Hun;Jang, Dong-Un
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.955-960
    • /
    • 2000
  • This paper evaluates the serviceability of vibration that is induced by people's walking and running when the long span hollow core slab is used. The dynamic characteristics like a natural frequency and a ramping ratio are found by impact loading test on the mock-up structures. Also, the human induced loading test output is evaluated by the various serviceability criteria. As the various serviceability criteria satisfy with this result, the vibration problem of relevant slab caused by people's behavior does not matter.

  • PDF

Analysis of effects of shrinkage of concrete added to widen RC girder bridge

  • Madaj, Arkadiusz;Siekierski, Wojciech
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.329-334
    • /
    • 2019
  • Traffic flow capacity of some old road bridges is insufficient due to limited deck width. In such cases bridge deck widening is a common solution. For multi-girder reinforced concrete (RC) bridges it is possible to add steel-concrete composite girders as the new outermost girders. The deck widening may be combined with bridge strengthening thanks to thickening of the existing deck slab. Joint action of the existing and the added parts of such bridge span must be ensured. It refers especially to the horizontal plane at the interface of the existing slab and the added concrete layer as well as to the vertical planes at the external surfaces of the initially outermost girders where the added girders are connected to the existing bridge span. Since the distribution of the added concrete is non-uniform in the span cross-section the structure is particularly sensitive to the added concrete shrinkage. The shrinkage induces shear forces in the aforementioned planes. Widening of a 12 m long RC multi-girder bridge span is numerically analysed to assess the influence of the added concrete shrinkage. The analysis results show that: a) in the vertical plane of the connection of the added and the existing deck slab the longitudinal shear due to the shrinkage of the added concrete is comparable with the effect of live load, b) it is necessary to provide appropriate longitudinal reinforcement in the deck slab over the added girders due to tension induced by the shrinkage of the added concrete.

Mechanical features of cable-supported ribbed beam composite slab structure

  • Qiao, W.T.;Wang, D.;Zhao, M.S.
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.523-534
    • /
    • 2017
  • Cable-supported ribbed beam composite slab structure (CBS) is proposed in this study. As a new cable-supported structure, it has many merits such as long span availability and cost-saving. Inspired by the previous research on cable-supported structures, the fabrication and construction process are developed. Pre-stress design method based on static equilibrium analysis is presented. In the algorithm, the iteration convergence can be accelerated and the calculation result can be kept in an acceptable precision by setting a rational threshold value. The accuracy of this method is also verified by experimental study on a 1:5 scaled model. Further, important parameters affecting the mechanical features of the CBS are discussed. The results indicate that the increases of sag-span ratio, depth of the ribbed beam and cable diameter can improve the mechanical behavior of the CBS by some extent, but the influence of strut sections on mechanical behavior of the CBS is negligible.