• Title/Summary/Keyword: long-chain polyunsaturated fatty acids

Search Result 44, Processing Time 0.023 seconds

Effects of $\omega$6 and $\omega$3 Fatty Acid Diets on the Fatty Acid Composition of the Mesenteric and Subcutaneous Fat of Lactating Rats

  • Chung, Hae-Yun;Chung, Eun-Jung;Lee, Yang-Cha-Kim
    • Nutritional Sciences
    • /
    • v.4 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • Long chain polyunsaturated fatty acids (LCPUFA) are important components of brain phospholipds and play important role (s) in brain function. In rats, the maximum brain growth occurs during the period of lactation even though it happens during the third trimester of gestation in human. Since milk contained docosahexaenoic acid (DHA) even through the maternal diet had no DHA and/or a very small amount of its precursor, $\alpha$-linolenic acid ($\alpha$-LnA), an emphasis was given to maternal adipose tissue as a reservoir of this fatty acid. We, therefore, investigated the mesenteric and subcutaneous adipose tissues for their fatty acid composition in dams reared with different fat diets. Diets containing various amounts of $\omega$6 and $\omega$3 fatty acids were given to adult female rats (200-250g) throughout the pregnancy and lactation periods. Diets were composed of 10% (wt/wt) corn oil (CO), soybean oil (SO), perilla seed oil (PO) containing about 60% $\alpha$-LnA, or fish oil (FO) rich in eicosapentaenoic acid (EPA) and DHA. The fatty acid ompositions of mesenteric and subcutaneous fat were measured and evaluated at Day-2 and Day-15 after parturition. In general, major characteristics of dietary fatty acid composition was reflected on the fatty acid composition of adipose tissues. Dietary fatty acid composition was reflected more on mesenteric fat as compared to subcutaneous fat. Mesenteric fat was found to contain less arachidonic acid (AA) and mesenteric fats of CO, SO and PO groups contained less DHA than did the subcutaneous fat. The P/M/S ratios of adipose tissues were similar between experimental groups while dietary P/M/S ratios differed significantly. It was noticeable that a small proportion of DHA was found in the adipose tissues of animals of CO, SO and PO groups (Day-2) and in SO and PO groups (Day-15), the groups which do not contain DHA in their diets. The percentage of DHA in mesenteric fat o CO, SO and PO groups decreased as lactation continues, while the proportion of DHA in FO group increased. Adipose tissues of FO group had higher DHA/EPA ratio as compared to the diet. Considering the fact that the body contains a large amount of adipose tissues, our present finding suggests that the adipose tissue can serve as a reservoir of DHA for pregnant and lactating rats.

  • PDF

Degummed crude canola oil, sire breed and gender effects on intramuscular long-chain omega-3 fatty acid properties of raw and cooked lamb meat

  • Flakemore, Aaron Ross;Malau-Aduli, Bunmi Sherifat;Nichols, Peter David;Malau-Aduli, Aduli Enoch Othniel
    • Journal of Animal Science and Technology
    • /
    • v.59 no.8
    • /
    • pp.17.1-17.13
    • /
    • 2017
  • Background: Omega-3 long-chain (${\geq}C_{20}$) polyunsaturated fatty acids (${\omega}3$ LC-PUFA) confer important attributes to health-conscious meat consumers due to the significant role they play in brain development, prevention of coronary heart disease, obesity and hypertension. In this study, the ${\omega}3$ LC-PUFA content of raw and cooked Longissimus thoracis et lumborum (LTL) muscle from genetically divergent Australian prime lambs supplemented with dietary degummed crude canola oil (DCCO) was evaluated. Methods: Samples of LTL muscle were sourced from 24 first cross ewe and wether lambs sired by Dorset, White Suffolk and Merino rams joined to Merino dams that were assigned to supplemental regimes of degummed crude canola oil (DCCO): a control diet at 0 mL/kg DM of DCCO (DCCOC); 25 mL/kg DM of DCCO (DCCOM) and 50 mL/kg DCCO (DCCOH). Lambs were individually housed and offered 1 kg/day/head for 42 days before being slaughtered. Samples for cooked analysis were prepared to a core temperature of $70^{\circ}C$ using conductive dry-heat. Results: Within raw meats: DCCOH supplemented lambs had significantly (P < 0.05) higher concentrations of eicosapentaenoic (EPA, $20:5{\omega}3$) and EPA + docosahexaenoic (DHA, $22:6{\omega}3$) acids than those supplemented with DCCOM or DCCOC; Dorset sired lambs contained significantly (P < 0.05) more EPA and EPA + DHA than other sire breeds; diet and sire breed interactions were significant (P < 0.05) in affecting EPA and EPA + DHA concentrations. In cooked meat, ${\omega}3$ LC-PUFA concentrations in DCCOM (32 mg/100 g), DCCOH (38 mg/100 g), Dorset (36 mg/100 g), White Suffolk (32 mg/100 g), ewes (32 mg/100 g) and wethers (33 mg/100 g), all exceeded the minimum content of 30 mg/100 g of edible cooked portion of EPA + DHA for Australian defined 'source' level ${\omega}3$ LC-PUFA classification. Conclusion: These results present that combinations of dietary degummed crude canola oil, sheep genetics and culinary preparation method can be used as effective management tools to deliver nutritionally improved ${\omega}3$ LC-PUFA lamb to meat consumers.

The Influence of DHA Supplementation in Maternal Diets on Fatty Acid Compositions of Plasma Lipids and Human Milk (수유기에 식이와 함께 섭취한 DHA가 산모의 혈액과 모유의 지질조성에 미치는 영향)

  • 조여원
    • Journal of Nutrition and Health
    • /
    • v.29 no.2
    • /
    • pp.213-222
    • /
    • 1996
  • The most abundant long-chain polyunsaturated fatty acid in brain lipids is docosahexaenoic acid(C22 : 6 N-3, DHA). It is incorporated into nerve tissues mostly in utero and during the first year of life. DHA in brain is derived from either pre-formed DHA in human milk or by infant hepatic synthesis from linolenic acid in milk. This study was designed to investigate the effects of DHA supplementation on fatty acid profiles in maternal plasma lipid and breast milk. Twenty lactating women participated in the study. Seven women took 3g of fish oil per day and vitamin E for 28 days starting from the day of giving birth. Five women consumed 1.5g of fish oil as well as tivamin E, and the rest took vitamin E supplements for the same period of time. Dietary questionnaires and 3 consecutive 24-h recalls were collected to evaluate theri nutritional status and food habits. Finding that DHA intake from fish was not significantly different among three experimental groups, the partcipants were instructed to continue eating their usual home diets. Milk samples were taken on the day of giving birth, as well as the 7th, 14th and 28th day being the supplement phase, and finally 2 weeks after the cessating of DHA supplements. The amounts of the fish oil supplements produced significant dose-dependent increased in the DHA content of milk and plasma, but to a lesser degree. Base-line for 28 days raised the level to 2.05$\pm$0.43% and 1.5g/day supplement produced DHA levels of 1.02$\pm$0.19%. The results of this study indicated that relatively small amount of dietary DHA supplementation significantly elevats DHA content in milk. This would clearly elevate the infant's DHA intake which in turn may have implications for the infant's brain development.

  • PDF

Dietary Manipulation of Lean Tissue Deposition in Broiler Chickens

  • Choct, M.;Naylor, A.J.;Oddy, V.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.692-698
    • /
    • 2005
  • Two experiments were conducted to examine the effect of graded levels of dietary chromium and leucine, and different fat sources on performance and body composition of broiler chickens. The results showed that chromium picolinate at 0.5 ppm significantly (p<0.05) lowered the carcass fat level. Gut weight and carcass water content were increased as a result of chromium treatment. Body weight, plucked weight, carcass weight, abdominal fat pad weight, breast yield and feed efficiency were unaffected by chromium treatment. Leucine did not interact with chromium to effect lean growth. Dietary leucine above the recommended maintenance level (1.2% of diet) markedly (p<0.001) reduced the breast muscle yield. The addition of fish oil to broiler diets reduced (p<0.05) the abdominal fat pad weights compared to birds on linseed diets. Fish oil is believed to improve lean growth through the effects of long chain polyunsaturated fatty acids in lowering the very low-density lipoprotein levels and triglyceride in the blood, in the meantime increasing glucose uptake into the muscle tissue in blood and by minimizing the negative impact of the immune system on protein breakdown. The amount of fat in the diet (2% or 4%) did not affect body composition.

Comparison of the Chemical Composition, Textural Characteristics, and Sensory Properties of North and South Korean Native Chickens and Commercial Broilers

  • Jeon, Hee-Joon;Choe, Jun-Ho;Jung, Yeon-Kook;Kruk, Zbigniew A.;Lim, Dong-Gyun;Jo, Cheo-Run
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.171-178
    • /
    • 2010
  • The objective of this study was to compare the quality characteristics of chicken breast and thigh meat from North Korean native chickens (NKNC), South Korean native chickens (SKNC, woorimotdak), and commercial broilers (CB). NKNC thigh meat had a higher crude protein content than CB. In addition, the breasts of NKNC and CB had higher pH values than that of SKNC, but the cooking loss was higher in NKNC. The surface color of the breast and thigh meat of NKNC was darker and redder than that of SKNC and CB. The total collagen content of the breast and thigh muscles was the highest in NKNC, followed by SKNC and CB. A similar trend occurred with breast meat hardness. The content of arachidonic and docosahexaenoic acids was higher in both the breast and thigh muscles of NKNC than in those of the other groups, while the concentrations of linoleic and linolenic acids were higher only in thigh meat. Sensory evaluation did not show any differences among the three different strains of chicken except for the meat color. Sensory panelists preferred thigh meat from SKNC and CB to that of NKNC due to the strong dark color of the NKNC. Based on these results, NKNC had harder breasts based on texture, as well as a darker surface color and higher composition of long chain polyunsaturated fatty acids than CB. The quality characteristics of SKNC tested in this study were intermediate between NKNC and CB; however, SKNC may have a better chance of acceptance by Korean consumers due to the undesirable color of NKNC.

Comparison of Triglyceride Structures of Human Milk, Infant Formulas and Market Milk (인유, 조제 분유 및 시유의 트리글리세리드 구조의 비교)

  • Yoon, Tai-Heon;Im, Kyung-Ja
    • Journal of the Korean Applied Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 1985
  • The fatty acid composition acyl carbon atoms and species of triglycerides from human mature milk, infant formulas (modified milk formula) and market milk were determined by argentation thin-lager and gas-liquid chromatography. Short-chain fatty acids which sere not detected in human milk were present in very small amount in modified milk formula and market milk. The levels for 5:0, 22:0 and 24:0 in modified milk formula and for 8:0, 10:0, 18:0, 22:0 and 24:0 in market milk were significantly higher than those in human milk. The levels for 10:0 and 14:0 in modified milk formula and for 12:0 and 20:0 in market milk were significantly lower than those in human milk. The relative percent of $18:2{\omega}6$ in human milk, modified milk formula and market milk were on average 12.0, 15.0 and 3.8 percents respectively. Human milk contained significantly higher proportions of both ${\omega}6-and{\omega}3-derived$ long chain polyunsaturated fatty acids than modified milk formula and market milk. The major triglycerides of human milk, modified milk formula and market milk made by the glycerides with 44-52, 50-54 and 36-40 acyl carbon atoms, respectively. There were significant differences in levels for total number of acyl carbon atoms per glycerid molecule of human milk, modified milk formula and market milk. In comparison with human milk, modified milk formula and market milk showed significantly higher levels for saturates but significantly lower levels for trienes to polyenes.

Serum level changes of long chain-polyunsaturated fatty acids in patients undergoing periodontal therapy combined with one year of omega-3 supplementation: a pilot randomized clinical trial

  • Martinez, Gisele Lago;Koury, Josely Correa;Martins, Marcela Anjos;Nogueira, Fernanda;Fischer, Ricardo Guimaraes;Gustafsson, Anders;Figueredo, Carlos Marcelo S.
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.4
    • /
    • pp.169-177
    • /
    • 2014
  • Purpose: We aimed to investigate the impact of nonsurgical periodontal treatment combined with one-year dietary supplementation with omega (${\omega}$)-3 on the serum levels of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and arachidonic acid (AA). Methods: Fifteen patients with chronic generalized periodontitis were treated with scaling and root planing. The test group consisted of seven patients ($43.1{\pm}6.0$ years) supplemented with ${\omega}$-3, consisting of EPA plus DHA, three capsules, each of 300 mg of ${\omega}$-3 (180-mg EPA/120-mg DHA), for 12 months. The control group was composed of eight patients ($46.1{\pm}11.6$ years) that took a placebo capsule for 12 months. The periodontal examination and the serum levels of DPA, EPA, DHA, and AA were performed at baseline (T0), and 4 (T1), and 12 (T2) months after therapy. Results: In the test group, AA and DPA levels had been reduced significantly at T1 (P<0.05). AA and EPA levels had been increased significantly at T2 (P<0.05). The ${\Delta}EPA$ was significantly higher in the test compared to the placebo group at T2-T0 (P=0.02). The AA/EPA had decreased significantly at T1 and T2 relative to baseline (P<0.05). Conclusions: Nonsurgical periodontal treatment combined with ${\omega}$-3 supplementation significantly increased the EPA levels and decreased the AA/EPA ratio in serum after one year follow-up. However, no effect on the clinical outcome of periodontal therapy was observed.

Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice

  • Hsiao, Wen-Ting;Su, Hui-Min;Su, Kuan-Pin;Chen, Szu-Han;Wu, Hai-Ping;You, Yi-Ling;Fu, Ru-Huei;Chao, Pei-Min
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.286-294
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of ${\alpha}$-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by $PPAR{\alpha}$. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among $PPAR{\alpha}$ homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate ($PPAR{\alpha}$ agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: $PPAR{\alpha}$ ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, $PPAR{\alpha}$ activation increased hepatic Acox, Fads1, Fads2, and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by $PPAR{\alpha}$. Either $PPAR{\alpha}$ deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.

Effects of Dietary Levels of Corn and Tuna Oils on the Formation of Preneoplastic Lesions in Rat Hepatocellular Carcinogenesis (쥐간세포암화과정에서 옥수수기름과 참치기름의 수준에 따른 전암성 병변의 변화)

  • Kim Sook hee;Kang Sang kyoung;Choi Hay mie
    • Journal of Nutrition and Health
    • /
    • v.38 no.1
    • /
    • pp.20-29
    • /
    • 2005
  • This study is conducted to determine the effects of dietary levels of corn and tuna oils on the formation of preneoplastic lesions in die-thylnitrosamine (DEN) induced rat hepatocarcinogenesis. Weanling male Sprague-Dawley rats were fed 2.5, 5, 15, 25% (w/w) corn or tuna oils. Hepatocellular carcinogenesis was induced by DEN (200 mg/kg body weight) and two-thirds partial hepactectomy was carried out 3 weeks later and were sacrificed 8 weeks after DEN initiation. Tuna oil group showed smaller area of placental glutathione S-transferase (GST-P) positive foci than com oil group. Com oil group of 25% (w/w) showed the widest area of GST -P positive foci, and tuna oil group showed significantly smaller area of GST-P positive foci than com oil in 25% (w/w) level but had no differences between oil levels. Thio-barbituric acid reactive substances (TBARS) content was the highest in 25% (w/w) level of tuna oil group fed long chain and highly polyunsaturated fatty acids. Also serum ${\gamma}$ -glutamyltranspeptidase (GGT) activities in 25% level of tuna oil group were significantly higher than by other levels. As oil contents increased, glucose 6-phosphatase (G6Pase) seems to decrease in com oil groups but remained the same in tuna oil groups. Glutathione reductase (GR) activities were significantly higher in tuna oil group, and the higher the level of tuna oil, the higher GR activities. But Cu/Zn superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities didn't seem to be influenced by levels and kind of dietary fats. Therefore, as oil levels increased, com oil rich in n-6 fatty acids promoted carcinogenesis but tuna oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) of n-3 fatty acids suppressed. Although lipid peroxidation products were elevated in 25% (w/w) tuna oil group, GST-P positive foci didn't increase. Therefore pre-neoplastic lesions might be reduced through mediation of a lipid peroxidation process in tuna oil. As fat contents of tuna oil increased, elevated GR activities may give a rise to produce more reduced glutathione in order to protect against free radical attack, and high G6Pase activities remained the same and they contributed to membrane stability. So tuna oil diet seems to protect hepatocarcinogenesis.

Control of Methane Emission in Ruminants and Industrial Application of Biogas from Livestock Manure in Korea

  • Song, Man-K.;Li, Xiang-Z.;Oh, Young-K.;Lee, Chang-Kyu;Hyun, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.130-136
    • /
    • 2011
  • Methane is known to be one of the major greenhouse gases. On a global scale, livestock farming may contribute 18% of total greenhouse gas emissions. Though methane contribution is less than 2% of all the factors leading to global warming, it plays an important role because it is 21 times more effective than carbon dioxide. Methane emission is a direct result of the fermentation process performed by ruminal microorganisms and, in particular, the archael methanogens. Reducing methane emission would benefit both ruminant production and the environment. Methane generation can be reduced by electron-sink metabolic pathways to dispose of the reducing moieties. An alternative way for methane control in the rumen is to apply inhibitors against methanogens. Generating methane from manure has considerable merit because it appears to offer at least a partial solution to two pressing problems-environmental crisis and energy shortage. An obvious benefit from methane production is the energy value of the gas itself. Control of methane emission by rumen microbes in Korea has mainly been focused on application of various chemicals, such as BES and PMDI, that inhibit the growth and activity of methanogens in the rumen. Alternatives were to apply long-chain polyunsaturated fatty acids and oils with or without organic acids (malate and fumarate). The results for trials with methane reducing agents and the situation of biogas production industries and a typical biogas plant in Korea will be introduced here.