• Title/Summary/Keyword: long-Term Object Tracking

Search Result 19, Processing Time 0.026 seconds

Scalable Re-detection for Correlation Filter in Visual Tracking

  • Park, Kayoung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.57-64
    • /
    • 2020
  • In this paper, we propose an scalable re-detection for correlation filter in visual tracking. In real world, there are lots of target disappearances and reappearances during tracking, thus failure detection and re-detection methods are needed. One of the important point for re-detection is that a searching area must be large enough to find the missing target. For robust visual tracking, we adopt kernelized correlation filter as a baseline. Correlation filters have been extensively studied for visual object tracking in recent years. However conventional correlation filters detect the target in the same size area with the trained filter which is only 2 to 3 times larger than the target. When the target is disappeared for a long time, we need to search a wide area to re-detect the target. Proposed algorithm can search the target in a scalable area, hence the searching area is expanded by 2% in every frame from the target loss. Four datasets are used for experiments and both qualitative and quantitative results are shown in this paper. Our algorithm succeed the target re-detection in challenging datasets while conventional correlation filter fails.

An Approach Using LSTM Model to Forecasting Customer Congestion Based on Indoor Human Tracking (실내 사람 위치 추적 기반 LSTM 모델을 이용한 고객 혼잡 예측 연구)

  • Hee-ju Chae;Kyeong-heon Kwak;Da-yeon Lee;Eunkyung Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • In this detailed and comprehensive study, our primary focus has been placed on accurately gauging the number of visitors and their real-time locations in commercial spaces. Particularly, in a real cafe, using security cameras, we have developed a system that can offer live updates on available seating and predict future congestion levels. By employing YOLO, a real-time object detection and tracking algorithm, the number of visitors and their respective locations in real-time are also monitored. This information is then used to update a cafe's indoor map, thereby enabling users to easily identify available seating. Moreover, we developed a model that predicts the congestion of a cafe in real time. The sophisticated model, designed to learn visitor count and movement patterns over diverse time intervals, is based on Long Short Term Memory (LSTM) to address the vanishing gradient problem and Sequence-to-Sequence (Seq2Seq) for processing data with temporal relationships. This innovative system has the potential to significantly improve cafe management efficiency and customer satisfaction by delivering reliable predictions of cafe congestion to all users. Our groundbreaking research not only demonstrates the effectiveness and utility of indoor location tracking technology implemented through security cameras but also proposes potential applications in other commercial spaces.

Indoor Environment Drone Detection through DBSCAN and Deep Learning

  • Ha Tran Thi;Hien Pham The;Yun-Seok Mun;Ic-Pyo Hong
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • In an era marked by the increasing use of drones and the growing demand for indoor surveillance, the development of a robust application for detecting and tracking both drones and humans within indoor spaces becomes imperative. This study presents an innovative application that uses FMCW radar to detect human and drone motions from the cloud point. At the outset, the DBSCAN (Density-based Spatial Clustering of Applications with Noise) algorithm is utilized to categorize cloud points into distinct groups, each representing the objects present in the tracking area. Notably, this algorithm demonstrates remarkable efficiency, particularly in clustering drone point clouds, achieving an impressive accuracy of up to 92.8%. Subsequently, the clusters are discerned and classified into either humans or drones by employing a deep learning model. A trio of models, including Deep Neural Network (DNN), Residual Network (ResNet), and Long Short-Term Memory (LSTM), are applied, and the outcomes reveal that the ResNet model achieves the highest accuracy. It attains an impressive 98.62% accuracy for identifying drone clusters and a noteworthy 96.75% accuracy for human clusters.

Long-term Object Tracking using Optical Flow and Template Matching (광류와 템플릿 정합을 이용한 장기 객체 추적)

  • Lim, Seung-Ouk;Lee, Si-Woong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.333-334
    • /
    • 2016
  • 본 논문은 광류와 템플릿 정합을 이용한 장기 객체 추적 기법을 제안한다. 템플릿 정합은 객체의 형태, 크기, 회전 등 변화에 취약하지만, 객체의 변화량이 적은 경우 검출 성능은 우수한 편이다. 동영상의 인접한 프레임들은 객체의 변화량이 크지 않아 템플릿 정합만으로도 검출이 가능하지만, 누적되는 오차로 인해 템플릿의 갱신이 필요하다. 하지만 템플릿 정합만으로는 갱신에 필요한 객체 영역을 특정할 수 없기 때문에, 광류를 이용하여 효과적으로 템플릿을 갱신할 수 있다. 이와 같은 구조의 적응형 템플릿 정합을 적용한 장기 객체 추적 기법을 제안하며, 모의 실험을 통해 장기 객체 추적이 가능함을 증명한다.

  • PDF

Construction of the Facilities Management System by Video Structuring (동영상자료 구조화에 의한 시설물관리시스템 구축)

  • Yoo, Hwan-Hee;Choi, Kyoung-Ho;Koo, Heung-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.69-74
    • /
    • 2004
  • By the expanding of infrastructure caused by urbanization, new technologies are required to manage various kinds of facilities. GIS has been appraised as valuable technology for facilities management since the 1990s. Therefore, the long and mid term GIS construction plan has been established by the national government and the local government. Some facilities management systems have been built and developed for suppling user-friendly functions. From this point of view, the information system based on the video sequences is considered a more effective way to improve the defects of conventional GIS using the digital map or the image as the base map. Using the video sequences as a base map, the availability of the system ill be increased because the real world information can be furnished to the users. In this study, through the connection between the GIS data, the digital map and the attribute data, and the video sequences taken from the airship using the video geo-referencing and the object tracking, we developed the facilities management system as a prototype which can effectively manage the road utilities. We also presented potentialities of the suggested system for facility management based on the video sequences.

  • PDF

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

Combining GPS and accelerometers' records to capture torsional response of cylindrical tower

  • AlSaleh, Raed J.;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.111-122
    • /
    • 2020
  • Researchers up to date have introduced several Structural Health Monitoring (SHM) techniques with varying advantages and drawbacks for each. Satellite positioning systems (GPS, GLONASS and GALILEO) based techniques proved to be promising, especially for high natural period structures. Particularly, the GPS has proved sufficient performance and reasonable accuracy in tracking real time dynamic displacements of flexible structures independent of atmospheric conditions, temperature variations and visibility of the monitored object. Tall structures are particularly sensitive to oscillations produced by different sources of dynamic actions; such as typhoons. Wind forces induce in the structure both longitudinal and perpendicular displacements with respect to the wind direction, resulting in torsional effects, which are usually more complex to be detected. To efficiently track the horizontal rotations of the in-plane sections of such flexible structures, two main issues have to be considered: a suitable sensor topology (i.e., location, installation, and combination of sensors), and the methodology used to process the data recorded by sensors. This paper reports the contributions of the measurements recorded from dual frequency GPS receivers and uni-axial accelerometers in a full-scale experimental campaign. The Canton tower in Guangzhou-China is the case study of this research, which is instrumented with a long-term structural health monitoring system deploying both accelerometers and GPS receivers. The elaboration of combining the obtained rather long records provided by these two types of sensors in detecting the torsional behavior of the tower under ambient vibration condition and during strong wind events is discussed in this paper. Results confirmed the reliability of GPS receivers in obtaining the dynamic characteristics of the system, and its ability to capture the torsional response of the tower when used alone or when they are combined with accelerometers integrated data.

Implementation of Specific Target Detection and Tracking Technique using Re-identification Technology based on public Multi-CCTV (공공 다중CCTV 기반에서 재식별 기술을 활용한 특정대상 탐지 및 추적기법 구현)

  • Hwang, Joo-Sung;Nguyen, Thanh Hai;Kang, Soo-Kyung;Kim, Young-Kyu;Kim, Joo-Yong;Chung, Myoung-Sug;Lee, Jooyeoun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.49-57
    • /
    • 2022
  • The government is making great efforts to prevent crimes such as missing children by using public CCTVs. However, there is a shortage of operating manpower, weakening of concentration due to long-term concentration, and difficulty in tracking. In addition, applying real-time object search, re-identification, and tracking through a deep learning algorithm showed a phenomenon of increased parameters and insufficient memory for speed reduction due to complex network analysis. In this paper, we designed the network to improve speed and save memory through the application of Yolo v4, which can recognize real-time objects, and the application of Batch and TensorRT technology. In this thesis, based on the research on these advanced algorithms, OSNet re-ranking and K-reciprocal nearest neighbor for re-identification, Jaccard distance dissimilarity measurement algorithm for correlation, etc. are developed and used in the solution of CCTV national safety identification and tracking system. As a result, we propose a solution that can track objects by recognizing and re-identification objects in real-time within situation of a Korean public multi-CCTV environment through a set of algorithm combinations.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.