• Title/Summary/Keyword: long term behaviour

Search Result 91, Processing Time 0.024 seconds

Prediction Method of Long Term Creep Behavior for ETFE Foil by Using Viscoelastic-Plastic Model (점탄소성 모델을 이용한 ETFE 막재의 장기 크리프 거동 예측기법 연구)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.3
    • /
    • pp.93-100
    • /
    • 2014
  • Ethylene Tetrafluoroethylene (ETFE) has been widely used in long-span buildings because of its light weight and high transparency. This paper studies the short and long term creep behaviour of ETFE foil. A series of short-term creep and recovery tests were performed, in which the residual strain was observed. A long-term creep test of the ETFE foil was also performed over 110 days. A viscoelastic-plastic model was then established to describe the short-term creep and recovery behaviour. The model contains a traditional multi-Kelvin part and an added steady-flow component to represent the viscoelastic and viscoplastic behaviour, respectively. The model successfully fit the data for three stresses and six temperatures. Additionally, time-temperature equivalency was adopted to predict the long-term creep behaviour of ETFE foil. Horizontal shifting factors were determined from the process of shifting creep-curves at six temperatures. The long-term creep behaviours at three temperatures were predicted. Finally, the long-term creep test showed that the short-term creep test at identical temperatures insufficiently predicted additional creep behaviour, and the long-term test verified the horizontal shifting factors derived from the time-temperature equivalency.

Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity

  • Luo, Kai;Pi, Yong-Lin;Gao, Wei;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.379-397
    • /
    • 2016
  • Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more significant long-term increases of deformations, but also significant long-term increases of internal actions under the same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the finite element method.

A finite element model for long-term analysis of timber-concrete composite beams

  • Fragiacomo, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.173-189
    • /
    • 2005
  • The paper presents a finite element model for studying timber-concrete composite beams under long-term loading. Both deformability of connection system and rheological behaviour of concrete, timber and connection are fully considered. The creep of component materials and the influence of moisture content on the creep of timber and connection, the so-called "mechano-sorptive" effect, are evaluated by means of accurate linear models. The solution is obtained by applying an effective step-by-step procedure in time, which does not require storing the whole stress history in some points in order to account for the creep behaviour. Hence the proposed method is suitable for analyses of composite beams subjected to complex loading and thermo-hygrometric histories. The possibility to accurately predict the long-term response is then shown by comparing numerical and experimental results for different tests.

Experimental investigation of long-term characteristics of greenschist

  • Zhang, Qing-Zhao;Shen, Ming-Rong;Ding, Wen-Qi;Jang, Hyun-Sic;Jang, Bo-An
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.531-552
    • /
    • 2016
  • The greenschist in the Jinping II Hydropower Station in southwest China exhibits continuous creep behaviour because of the geological conditions in the region. This phenomenon illustrates the time-dependent deformation and progressive damage that occurs after excavation. In this study, the responses of greenschist to stress over time were determined in a series of laboratory tests on samples collected from the access tunnel walls at the construction site. The results showed that the greenschist presented time-dependent behaviour under long-term loading. The samples generally experienced two stages: transient creep and steady creep, but no accelerating creep. The periods of transient creep and steady creep increased with increasing stress levels. The long-term strength of the greenschist was identified based on the variation of creep strain and creep rate. The ratio of long-term strength to conventional strength was around 80% and did not vary much with confining pressures. A quantitative method for predicting the failure period of greenschist, based on analysis of the stress-strain curve, is presented and implemented. At a confining pressure of 40 MPa, greenschist was predicted to fail in 5000 days under a stress of 290 MPa and to fail in 85 days under the stress of 320 MPa, indicating that the long-term strength identified by the creep rate and creep strain is a reliable estimate.

Finite element model for the long-term behaviour of composite steel-concrete push tests

  • Mirza, O.;Uy, B.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.45-67
    • /
    • 2010
  • Composite steel-concrete structures are employed extensively in modern high rise buildings and bridges. This concept has achieved wide spread acceptance because it guarantees economic benefits attributable to reduced construction time and large improvements in stiffness. Even though the combination of steel and concrete enhances the strength and stiffness of composite beams, the time-dependent behaviour of concrete may weaken the strength of the shear connection. When the concrete loses its strength, it will transfer its stresses to the structural steel through the shear studs. This behaviour will reduce the strength of the composite member. This paper presents the development of an accurate finite element model using ABAQUS to study the behaviour of shear connectors in push tests incorporating the time-dependent behaviour of concrete. The structure is modelled using three-dimensional solid elements for the structural steel beam, shear connectors, concrete slab and profiled steel sheeting. Adequate care is taken in the modelling of the concrete behaviour when creep is taken into account owing to the change in the elastic modulus with respect to time. The finite element analyses indicated that the slip ductility, the strength and the stiffness of the composite member were all reduced with respect to time. The results of this paper will prove useful in the modelling of the overall composite beam behaviour. Further experiments to validate the models presented herein will be conducted and reported at a later stage.

Strength of FRP RC sections after long-term loading

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.345-365
    • /
    • 2003
  • The adoption of fibre reinforced polymer (FRP) rebars (whose behaviour is elastic-brittle) in reinforced concrete (RC) cross sections requires the assessment of the influence of time-dependent behaviour of concrete on the load-carrying capacity of these sections. This paper presents a method of computing the load-carrying capacity of sections that are at first submitted to a constant long-term service load and then overloaded up to ultimate load. The method solves first a non-linear visco-elastic problem, and then a non-linear instantaneous analysis up to ultimate load that takes into account the self-equilibrated stress distribution previously computed. This method is then adopted to perform a parametric analysis that shows that creep and shrinkage of concrete increase the load-carrying capacity of the cross section reinforced with FRP and allows for the suggestion of simple design rules.

Creep behaviour of normal- and high-strength self-compacting concrete

  • Aslani, Farhad
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.921-938
    • /
    • 2015
  • Realistic prediction of concrete creep is of crucial importance for durability and long-term serviceability of concrete structures. To date, research about the behaviour of self-compacting concrete (SCC) members, especially concerning the long-term performance, is rather limited. SCC is quite different from conventional concrete (CC) in mixture proportions and applied materials, particularly in the presence of aggregate which is limited. Hence, the realistic prediction of creep strains in SCC is an important requirement for the design process of this type of concrete structures. This study reviews the accuracy of the conventional concrete (CC) creep prediction models proposed by the international codes of practice, including: CEB-FIP (1990), ACI 209R (1997), Eurocode 2 (2001), JSCE (2002), AASHTO (2004), AASHTO (2007), AS 3600 (2009). Also, SCC creep prediction models proposed by Poppe and De Schutter (2005), Larson (2007) and Cordoba (2007) are reviewed. Further, new creep prediction model based on the comprehensive analysis on both of the available models i.e. the CC and the SCC is proposed. The predicted creep strains are compared with the actual measured creep strains in 55 mixtures of SCC and 16 mixtures of CC.

Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate

  • Ranzi, Gianluca
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.237-255
    • /
    • 2006
  • This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.

AN ANALYSIS OF LONG-TERM LIGHT CURVES OF FOUR NOVALIKE VARIABLES

  • KRAICHEVA ZDRAVKA;STANISHEV VALLERY;POPOV VASIL;SPASSOVSKA IGLIKA
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.227-228
    • /
    • 1996
  • The long-term light curves of the novalikes TT Ari, KR Aur, AM Her and MV Lyr, were compiled and analysed for solar-like cyclical behaviour. The frequency analysis showed long-term cyclical modulations of the brightness of the stars, which can be ascribed to changes of the radii of the late type secondaries in order of ${\Delta}R/R{\simeq} 10^{-4}-10^{-5}$.

  • PDF

Prediction and Measurement of Behaviour of Soft Soil Deposits (연약지반에서 예측 거동과 계측 결과 분석)

  • Kim, Yun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.351-362
    • /
    • 2007
  • Predicted behaviour of a soft clay deposit in design stage is sometimes different from in-situ settlement and pore pressure measured during and after construction. In this paper, characteristics of settlement and pore pressure occurred in soft soil deposits were investigated briefly in order to get a better understanding of time-dependent viscoplastic behaviour and prevent geotechnical problems resulted from long-term settlement, differential settlement, etc.

  • PDF