• Title/Summary/Keyword: long rainfall

Search Result 562, Processing Time 0.026 seconds

A Study on the Positive Economic Values of Rain After a Long Drought: for the Rainfall Case of 20~21 April, 2009 (오랜 가뭄 뒤 내린 비에 대한 긍정적 측면의 경제적 가치 연구: 2009년 4월 20~21일 강수 사례 중심으로)

  • Lee, Young-Gon;Kim, Baek-Jo;Cha, Kee-Uk;Park, Gil-Un;Ryoo, Kyong-Sik
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.173-186
    • /
    • 2010
  • The impact of the precipitation has been focused on losses in social and economical sectors. However, as growing the concerns of the future water shortage caused by the climate change, the precipitation should be consider in various views for an effective planning in the water resource management. A precipitation case occurred from 20 to 21 April 2009 was recorded as a welcome rain because it reduced the severe drought continued in Korea from winter season of 2008. In this study, economic values of the event was calculated with positive aspects in various sectors. The estimation is based on four major parts such as a secure of water resources, the improvement of air quality, the decrease of forest fires, and the reduction of the drought impact. The water resources only considered inflow waters into dams and the reservoirs managed by Korean public institutions and their economic values accounts for 5.92 billion won. Decreases of four air pollutants($PM_{10}$, $NO_2$, CO, and $SO_2$) were considered as the positive effects of the rainfall and estimated 175.4 billion won. The preventive effect of the forest fire after the rainfall results in 0.48 billion won. Finally, the rainfall during the drought period is effective to reduce the social costs of 108.65 billion won. Although the economic values estimated in this study explain parts of the positive effects of the precipitation, it can help to develop a comprehensive and systematic valuation system for the whole process of the precipitation. For doing this, various rainfall types should be analyzed in social-economic terms including economics, environments and hydrology.

Effect of Hydraulic Conductivity on Suction Profile and Stability of Cut-Slope during Low Intensity Rainfall (저강도 강우시 절토사면의 흡인력 분포와 안정성에 대한 투수계수의 효과)

  • Khalid, Mahmood;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.63-70
    • /
    • 2012
  • The authors discuss the effect of hydraulic conductivity on the suction profile and stability of a typical cut-slope subjected to low intensity rainfall. The initial suction value above the ground table in the unsaturated zone is assumed to be 15 kPa. The uncoupled approach of finite element and limit equilibrium method is used to evaluate the stability of the cut-slope at different elapsed times of rainfall. The finite element seepage analysis shows that the soil in the unsaturated zone always remains unsaturated during the course of low intensity rainfall. Furthermore, the slope stability remains practically unchanged so long as the wetting front remains in the unsaturated zone but it decreases noticeably when the wetting front reaches and elevates the ground water table level.

Analysis of future flood inundation change in the Tonle Sap basin under a climate change scenario

  • Lee, Dae Eop;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.433-446
    • /
    • 2021
  • In this study, the future flood inundation changes under a climate change were simulated in the Tonle Sap basin in Cambodia, one of the countries with high vulnerability to climate change. For the flood inundation simulation using the rainfall-runoff-inundation (RRI) model, globally available geological data (digital elevation model [DEM]; hydrological data and maps based on Shuttle elevation derivatives [HydroSHED]; land cover: Global land cover facility-moderate resolution imaging spectroradiometer [GLCF-MODIS]), rainfall data (Asian precipitation-highly-resolved observational data integration towards evaluation [APHRODITE]), climate change scenario (HadGEM3-RA), and observational water level (Kratie, Koh Khel, Neak Luong st.) were constructed. The future runoff from the Kratie station, the upper boundary condition of the RRI model, was constructed to be predicted using the long short-term memory (LSTM) model. Based on the results predicted by the LSTM model, a total of 4 cases were selected (representative concentration pathway [RCP] 4.5: 2035, 2075; RCP 8.5: 2051, 2072) with the largest annual average runoff by period and scenario. The results of the analysis of the future flood inundation in the Tonle Sap basin were compared with the results of previous studies. Unlike in the past, when the change in the depth of inundation changed to a range of about 1 to 10 meters during the 1997 - 2005 period, it occurred in a range of about 5 to 9 meters during the future period. The results show that in the future RCP 4.5 and 8.5 scenarios, the variability of discharge is reduced compared to the past and that climate change could change the runoff patterns of the Tonle Sap basin.

Analysis of Inundation Area in the Agricultural Land under Climate Change through Coupled Modeling for Upstream and Downstream (상·하류 연계 모의를 통한 기후변화에 따른 농경지 침수면적 변화 분석)

  • Park, Seongjae;Kwak, Jihye;Kim, Jihye;Kim, Seokhyeon;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.49-66
    • /
    • 2024
  • Extreme rainfall will become intense due to climate change, increasing inundation risk to agricultural land. Hydrological and hydraulic simulations for the entire watershed were conducted to analyze the impact of climate change. Rainfall data was collected based on past weather observation and SSP (Shared Socio-economic Pathway)5-8.5 climate change scenarios. Simulation for flood volume, reservoir operation, river level, and inundation of agricultural land was conducted through K-HAS (KRC Hydraulics & Hydrology Analysis System) and HEC-RAS (Hydrologic Engineering Center - River Analysis System). Various scenarios were selected, encompassing different periods of rainfall data, including the observed period (1973-2022), near-term future (2021-2050), mid-term future (2051-2080), and long-term future (2081-2100), in addition to probabilistic precipitation events with return periods of 20 years and 100 years. The inundation area of the Aho-Buin district was visualized through GIS (Geographic Information System) based on the results of the flooding analysis. The probabilistic precipitation of climate change scenarios was calculated higher than that of past observations, which affected the increase in reservoir inflow, river level, inundation time, and inundation area. The inundation area and inundation time were higher in the 100-year frequency. Inundation risk was high in the order of long-term future, near-term future, mid-term future, and observed period. It was also shown that the Aho and Buin districts were vulnerable to inundation. These results are expected to be used as fundamental data for assessing the risk of flooding for agricultural land and downstream watersheds under climate change, guiding drainage improvement projects, and making flood risk maps.

Analysis of Changes in Rainfall Frequency Under Different Thresholds and Its Synoptic Pattern (절점기준에 따른 강우빈도 변화 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.791-803
    • /
    • 2016
  • Recently, frequency of extreme rainfall events in South Korea has been substantially increased due to the enhanced climate variability. Korea is prone to flooding due to being surrounded by mountains, along with high rainfall intensity during a short period. In the past three decades, an increase in the frequency of heavy rainfall events has been observed due to enhanced climate variability and climate change. This study aimed to analyze extreme rainfalls informed by their frequency of occurrences using a long-term rainfall data. In this respect, we developed a Poisson-Generalized Pareto Distribution (Poisson-GPD) based rainfall frequency method which allows us to simultaneously explore changes in the amount and exceedance probability of the extreme rainfall events defined by different thresholds. Additionally, this study utilized a Bayesian approach to better estimate both parameters and their uncertainties. We also investigated the synoptic patterns associated with the extreme events considered in this study. The results showed that the Poisson-GPD based design rainfalls were rather larger than those of based on the Gumbel distribution. It seems that the Poisson-GPD model offers a more reasonable explanation in the context of flood safety issue, by explicitly considering the changes in the frequency. Also, this study confirmed that low and high pressure system in the East China Sea and the central North Pacific, respectively, plays crucial roles in the development of the extreme rainfall in South Korea.

A Derivation of Regional Representative Intensity-Duration-Frequency Relationship Using Multivariate Analysis (다변량 분석을 이용한 권역별 대표확률강우강도식의 유도)

  • Lee, Jung-Sik;Cho, Seong-Geun;Jang, Jin-Uk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.13-24
    • /
    • 2007
  • This study is to derive the rainfall intensity formula based on the representative probability distribution using multivariate analysis in Korea. The annual maximum rainfall data at 57 stations having more than 30years long records were used for 12 durations(10min, 1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24hr). 50 rainfall characteristics elements are analyzed from the collected data. The widely used 14 probability distributions are applied to the basic data in hydrologic frequency analysis. The homogeneous tests(principal component and cluster analysis) are applied to find the rainfall homogeneity. The results of this study are as followings; (1) The homogeneous test shows that there is no appropriate representative distribution for the whole duration in Korea. But hydrological homogeneous regions of point rainfall could be divided by 5 regions. (2) The GEV distribution for zones I, III, IV, V and the Gumbel distribution for zone II are determined as the representative probability distribution. (3) Comparative analysis of the results shows that the probable rainfalls of representative zones are different from those of existing researches. (4) Rainfall intensity formulas are determined on the basis of the linearization technique for the probable rainfall.

Estimation of reflectivity-rainfall relationship parameters and uncertainty assessment for high resolution rainfall information (고해상도 강수정보 생산을 위한 레이더 반사도-강수량 관계식 매개변수 보정 및 불확실성 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.321-334
    • /
    • 2021
  • A fixed reflectivity-rainfall relationship approach, such as the Marshall-Palmer relationship, for an entire year and different seasons, can be problematic in cases where the relationship varies spatially and temporally throughout a region. From this perspective, this study explores the use of long-term radar reflectivity for South Korea to obtain a nationwide calibrated Z-R relationship and the associated uncertainties within a Bayesian inference framework. A calibrated spatially structured pattern in the parameters exists, particularly for the wet season and parameter for the dry season. A pronounced region of high values during the wet and dry seasons may be partially associated with storm movements in that season. Overall, the radar rainfall fields based on the proposed modeling procedure are similar to the observed rainfall fields. In contrast, the radar rainfall fields obtained from the existing Marshall-Palmer relationship show a systematic underestimation. In the event of high impact weather, it is expected that the value of national radar resources can be improved by establishing an active watershed-level hydrological analysis system.

Characteristics of Non-Point Pollutant Runoff in Highland Field Fields through Long-term Monitoring (장기 모니터링을 통한 고랭지 밭 지역의 비점오염물질 유출특성)

  • Lee, Su In;Shin, Jae Young;Shin, Min Hwan;Ju, So-Hui;Seo, Ji Yeon;Park, Woon Ji;Lee, Jae Young;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.85-96
    • /
    • 2017
  • In this research, I performed rainfall monitoring by selecting the spot which can represent high altitude cool farm region in recent 3 years, and tried to understand the characteristic of outflow of non-point pollutants coming from high altitude cool farm region. As a result, it was shown that reducing rainfall runoff in highland farm area can reduce non-point pollution load and should consider priority to reduce runoff through management resources when selecting abatement method. Additionally, it is judged that reduction method related to base run-off should be selected by performing research on material motion of TN.

Assessment of Future Climate Change Impact on Soil Erosion Loss of Metropolitan Area Using Ministry of Environment Land Use Information (환경부 토지이용정보를 이용한 수도권의 미래 기후변화에 따른 토양유실 예측 및 평가)

  • Ha, Rim;Joh, Hyungkyung;Kim, Seongjoon
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.89-98
    • /
    • 2014
  • This study is to evaluate the future potential impact of climate change on soil erosion loss in a metropolitan area using Revised Universal Soil Loss Equation(RUSLE) with land use information of the Ministry of Environment and rainfall data for present and future years(30-year period). The spatial distribution map of vulnerable areas to soil erosion was prepared to provide the basis information for soil conservation and long-term land use planning. For the future climate change scenario, the MIROC3.2 HiRes A1B($CO_2720ppm$ level 2100) was downscaled for 2040-2069(2040s) and 2070-2099(2080s) using the stochastic weather generator(LARS-WG) with average rainfall data during past 30 years(1980-2010, baseline period). By applying the climate prediction to the RUSLE, the soil erosion loss was evaluated. From the results, the soil erosion loss showed a general tendency to increase with rainfall intensity. The soil loss increased up to 13.7%(55.7 ton/ha/yr) in the 2040s and 29.8%(63.6 ton/ha/yr) in the 2080s based on the baseline data(49.0 ton/ha/yr).

  • PDF

A Case Study on Occurrence of Landslide by Heavy Rainfall in Hongcheon Area in 2006 (2006년 집중호우에 의한 홍천지역의 산사태 발생 사례 연구)

  • Kim,, Ho-Jin;Im, Oh-Bin;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.877-882
    • /
    • 2010
  • This paper is a result of investigating causes and main characteristics of landslides, occurred at Hongcheon area in Gangwondo during July in 2006, by collecting relevant data and visiting site. The main cause of landslides in this area has been found to be saturation of the ground wetted by a series of precipitations during 10~13 July and the heavy rainfall during 15 July. The pattern of the landslides could be classified as translational failure, occurred at the boundary between the relatively thin weathered residual soil and the mother rock. By analyzing a number of failed slopes based on site visit and reviewing collected data, typical widths of failed slopes are in the range of 10~20m (minimum: 5m, maximum: 70m). Lengths of landslide area are in the wide range of 10~450m. Most of area are less than 20m in width and 100m in length so that their shapes are long and narrow, frequently observed in Korea, and their areas are relatively small size of around $1000m^2$. The inclinations of the failed slopes are in the range of $10{\sim}60^{\circ}$ while the most probable slope angle is about $20{\sim}25^{\circ}$.

  • PDF